Created
November 17, 2023 08:09
-
-
Save xinyangli/68cd60731bdedcd9839976323b0aaffc to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from diffusers import DiffusionPipeline | |
from transformers import CLIPTokenizer | |
import torch | |
import os | |
tokenizer = CLIPTokenizer.from_pretrained( | |
"stabilityai/stable-diffusion-xl-base-1.0", subfolder="tokenizer", device_map="auto" | |
) | |
# load both base & refiner | |
base = DiffusionPipeline.from_pretrained( | |
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True, | |
# FIXME: Might be a bug? Output arrays of default tokenizers have different size. | |
tokenizer=tokenizer, tokenizer_2=tokenizer | |
) | |
base.unet = torch.compile(base.unet, mode="reduce-overhead", fullgraph=True) | |
base.to("cuda") | |
refiner = DiffusionPipeline.from_pretrained( | |
"stabilityai/stable-diffusion-xl-refiner-1.0", | |
text_encoder_2=base.text_encoder_2, | |
vae=base.vae, | |
torch_dtype=torch.float16, | |
use_safetensors=True, | |
variant="fp16", | |
) | |
refiner.unet = torch.compile(refiner.unet, mode="reduce-overhead", fullgraph=True) | |
refiner.to("cuda") | |
# Define how many steps and what % of steps to be run on each experts (80/20) here | |
n_steps = 40 | |
high_noise_frac = 0.8 | |
# compel = Compel( | |
# tokenizer=[base.tokenizer, base.tokenizer_2] , | |
# text_encoder=[base.text_encoder, base.text_encoder_2], | |
# returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED, | |
# requires_pooled=[False, True], | |
# truncate_long_prompts=False | |
# ) | |
os.makedirs("output-img/sdxl_lpw", exist_ok=True) | |
with open("canva.benchmark.txt", "r") as f: | |
for index, prompt in enumerate(f): | |
image = base( | |
# prompt_embeds=conditioning, | |
# pooled_prompt_embeds=pooled, | |
# negative_prompt_embeds=negative_conditioning, | |
# negative_pooled_prompt_embeds=negative_pooled, | |
prompt=prompt, | |
prompt_2=prompt, | |
negative_prompt="", | |
negative_prompt_2="", | |
num_inference_steps=n_steps, | |
denoising_end=high_noise_frac, | |
output_type="latent", | |
).images | |
image = refiner( | |
# prompt_embeds=conditioning, | |
# pooled_prompt_embeds=pooled, | |
# negative_prompt_embeds=negative_conditioning, | |
# negative_pooled_prompt_embeds=negative_pooled, | |
prompt=prompt, | |
num_inference_steps=n_steps, | |
denoising_start=high_noise_frac, | |
image=image, | |
).images[0] | |
image.save(f"output-img/sdxl/{index+1}.png") | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment