Skip to content

Instantly share code, notes, and snippets.

@xmfbit
Created July 5, 2016 13:12
Show Gist options
  • Save xmfbit/8e64e6c42a4b56c82b15daa45f8719d9 to your computer and use it in GitHub Desktop.
Save xmfbit/8e64e6c42a4b56c82b15daa45f8719d9 to your computer and use it in GitHub Desktop.
proto file for R-FCN using ResNet-50
name: "ResNet-50"
input: "data"
input_dim: 1
input_dim: 3
input_dim: 224
input_dim: 224
input: "rois"
input_dim: 1 # to be changed on-the-fly to num ROIs
input_dim: 5 # [batch ind, x1, y1, x2, y2] zero-based indexing
input_dim: 1
input_dim: 1
# ------------------------ conv1 -----------------------------
layer {
bottom: "data"
top: "conv1"
name: "conv1"
type: "Convolution"
convolution_param {
num_output: 64
kernel_size: 7
pad: 3
stride: 2
}
param {
lr_mult: 0.0
}
param {
lr_mult: 0.0
}
}
layer {
bottom: "conv1"
top: "conv1"
name: "bn_conv1"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "conv1"
top: "conv1"
name: "scale_conv1"
type: "Scale"
scale_param {
bias_term: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "conv1"
top: "conv1"
name: "conv1_relu"
type: "ReLU"
}
layer {
bottom: "conv1"
top: "pool1"
name: "pool1"
type: "Pooling"
pooling_param {
kernel_size: 3
stride: 2
pool: MAX
}
}
layer {
bottom: "pool1"
top: "res2a_branch1"
name: "res2a_branch1"
type: "Convolution"
convolution_param {
num_output: 256
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
param {
lr_mult: 0.0
}
}
layer {
bottom: "res2a_branch1"
top: "res2a_branch1"
name: "bn2a_branch1"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res2a_branch1"
top: "res2a_branch1"
name: "scale2a_branch1"
type: "Scale"
scale_param {
bias_term: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "pool1"
top: "res2a_branch2a"
name: "res2a_branch2a"
type: "Convolution"
convolution_param {
num_output: 64
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
param {
lr_mult: 0.0
}
}
layer {
bottom: "res2a_branch2a"
top: "res2a_branch2a"
name: "bn2a_branch2a"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res2a_branch2a"
top: "res2a_branch2a"
name: "scale2a_branch2a"
type: "Scale"
scale_param {
bias_term: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res2a_branch2a"
top: "res2a_branch2a"
name: "res2a_branch2a_relu"
type: "ReLU"
}
layer {
bottom: "res2a_branch2a"
top: "res2a_branch2b"
name: "res2a_branch2b"
type: "Convolution"
convolution_param {
num_output: 64
kernel_size: 3
pad: 1
stride: 1
bias_term: false
}
param {
lr_mult: 0.0
}
}
layer {
bottom: "res2a_branch2b"
top: "res2a_branch2b"
name: "bn2a_branch2b"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res2a_branch2b"
top: "res2a_branch2b"
name: "scale2a_branch2b"
type: "Scale"
scale_param {
bias_term: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res2a_branch2b"
top: "res2a_branch2b"
name: "res2a_branch2b_relu"
type: "ReLU"
}
layer {
bottom: "res2a_branch2b"
top: "res2a_branch2c"
name: "res2a_branch2c"
type: "Convolution"
convolution_param {
num_output: 256
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
param {
lr_mult: 0.0
}
}
layer {
bottom: "res2a_branch2c"
top: "res2a_branch2c"
name: "bn2a_branch2c"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res2a_branch2c"
top: "res2a_branch2c"
name: "scale2a_branch2c"
type: "Scale"
scale_param {
bias_term: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res2a_branch1"
bottom: "res2a_branch2c"
top: "res2a"
name: "res2a"
type: "Eltwise"
}
layer {
bottom: "res2a"
top: "res2a"
name: "res2a_relu"
type: "ReLU"
}
layer {
bottom: "res2a"
top: "res2b_branch2a"
name: "res2b_branch2a"
type: "Convolution"
convolution_param {
num_output: 64
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
param {
lr_mult: 0.0
}
}
layer {
bottom: "res2b_branch2a"
top: "res2b_branch2a"
name: "bn2b_branch2a"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res2b_branch2a"
top: "res2b_branch2a"
name: "scale2b_branch2a"
type: "Scale"
scale_param {
bias_term: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res2b_branch2a"
top: "res2b_branch2a"
name: "res2b_branch2a_relu"
type: "ReLU"
}
layer {
bottom: "res2b_branch2a"
top: "res2b_branch2b"
name: "res2b_branch2b"
type: "Convolution"
convolution_param {
num_output: 64
kernel_size: 3
pad: 1
stride: 1
bias_term: false
}
param {
lr_mult: 0.0
}
}
layer {
bottom: "res2b_branch2b"
top: "res2b_branch2b"
name: "bn2b_branch2b"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res2b_branch2b"
top: "res2b_branch2b"
name: "scale2b_branch2b"
type: "Scale"
scale_param {
bias_term: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res2b_branch2b"
top: "res2b_branch2b"
name: "res2b_branch2b_relu"
type: "ReLU"
}
layer {
bottom: "res2b_branch2b"
top: "res2b_branch2c"
name: "res2b_branch2c"
type: "Convolution"
convolution_param {
num_output: 256
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
param {
lr_mult: 0.0
}
}
layer {
bottom: "res2b_branch2c"
top: "res2b_branch2c"
name: "bn2b_branch2c"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res2b_branch2c"
top: "res2b_branch2c"
name: "scale2b_branch2c"
type: "Scale"
scale_param {
bias_term: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res2a"
bottom: "res2b_branch2c"
top: "res2b"
name: "res2b"
type: "Eltwise"
}
layer {
bottom: "res2b"
top: "res2b"
name: "res2b_relu"
type: "ReLU"
}
layer {
bottom: "res2b"
top: "res2c_branch2a"
name: "res2c_branch2a"
type: "Convolution"
convolution_param {
num_output: 64
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
param {
lr_mult: 0.0
}
}
layer {
bottom: "res2c_branch2a"
top: "res2c_branch2a"
name: "bn2c_branch2a"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res2c_branch2a"
top: "res2c_branch2a"
name: "scale2c_branch2a"
type: "Scale"
scale_param {
bias_term: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res2c_branch2a"
top: "res2c_branch2a"
name: "res2c_branch2a_relu"
type: "ReLU"
}
layer {
bottom: "res2c_branch2a"
top: "res2c_branch2b"
name: "res2c_branch2b"
type: "Convolution"
convolution_param {
num_output: 64
kernel_size: 3
pad: 1
stride: 1
bias_term: false
}
param {
lr_mult: 0.0
}
}
layer {
bottom: "res2c_branch2b"
top: "res2c_branch2b"
name: "bn2c_branch2b"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res2c_branch2b"
top: "res2c_branch2b"
name: "scale2c_branch2b"
type: "Scale"
scale_param {
bias_term: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res2c_branch2b"
top: "res2c_branch2b"
name: "res2c_branch2b_relu"
type: "ReLU"
}
layer {
bottom: "res2c_branch2b"
top: "res2c_branch2c"
name: "res2c_branch2c"
type: "Convolution"
convolution_param {
num_output: 256
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
param {
lr_mult: 0.0
}
}
layer {
bottom: "res2c_branch2c"
top: "res2c_branch2c"
name: "bn2c_branch2c"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res2c_branch2c"
top: "res2c_branch2c"
name: "scale2c_branch2c"
type: "Scale"
scale_param {
bias_term: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res2b"
bottom: "res2c_branch2c"
top: "res2c"
name: "res2c"
type: "Eltwise"
}
layer {
bottom: "res2c"
top: "res2c"
name: "res2c_relu"
type: "ReLU"
}
layer {
bottom: "res2c"
top: "res3a_branch1"
name: "res3a_branch1"
type: "Convolution"
convolution_param {
num_output: 512
kernel_size: 1
pad: 0
stride: 2
bias_term: false
}
param {
lr_mult: 1.0
}
}
layer {
bottom: "res3a_branch1"
top: "res3a_branch1"
name: "bn3a_branch1"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res3a_branch1"
top: "res3a_branch1"
name: "scale3a_branch1"
type: "Scale"
scale_param {
bias_term: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res2c"
top: "res3a_branch2a"
name: "res3a_branch2a"
type: "Convolution"
convolution_param {
num_output: 128
kernel_size: 1
pad: 0
stride: 2
bias_term: false
}
param {
lr_mult: 1.0
}
}
layer {
bottom: "res3a_branch2a"
top: "res3a_branch2a"
name: "bn3a_branch2a"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res3a_branch2a"
top: "res3a_branch2a"
name: "scale3a_branch2a"
type: "Scale"
scale_param {
bias_term: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res3a_branch2a"
top: "res3a_branch2a"
name: "res3a_branch2a_relu"
type: "ReLU"
}
layer {
bottom: "res3a_branch2a"
top: "res3a_branch2b"
name: "res3a_branch2b"
type: "Convolution"
convolution_param {
num_output: 128
kernel_size: 3
pad: 1
stride: 1
bias_term: false
}
param {
lr_mult: 1.0
}
}
layer {
bottom: "res3a_branch2b"
top: "res3a_branch2b"
name: "bn3a_branch2b"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res3a_branch2b"
top: "res3a_branch2b"
name: "scale3a_branch2b"
type: "Scale"
scale_param {
bias_term: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res3a_branch2b"
top: "res3a_branch2b"
name: "res3a_branch2b_relu"
type: "ReLU"
}
layer {
bottom: "res3a_branch2b"
top: "res3a_branch2c"
name: "res3a_branch2c"
type: "Convolution"
convolution_param {
num_output: 512
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
param {
lr_mult: 1.0
}
}
layer {
bottom: "res3a_branch2c"
top: "res3a_branch2c"
name: "bn3a_branch2c"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res3a_branch2c"
top: "res3a_branch2c"
name: "scale3a_branch2c"
type: "Scale"
scale_param {
bias_term: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res3a_branch1"
bottom: "res3a_branch2c"
top: "res3a"
name: "res3a"
type: "Eltwise"
}
layer {
bottom: "res3a"
top: "res3a"
name: "res3a_relu"
type: "ReLU"
}
layer {
bottom: "res3a"
top: "res3b_branch2a"
name: "res3b_branch2a"
type: "Convolution"
convolution_param {
num_output: 128
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
param {
lr_mult: 1.0
}
}
layer {
bottom: "res3b_branch2a"
top: "res3b_branch2a"
name: "bn3b_branch2a"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res3b_branch2a"
top: "res3b_branch2a"
name: "scale3b_branch2a"
type: "Scale"
scale_param {
bias_term: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res3b_branch2a"
top: "res3b_branch2a"
name: "res3b_branch2a_relu"
type: "ReLU"
}
layer {
bottom: "res3b_branch2a"
top: "res3b_branch2b"
name: "res3b_branch2b"
type: "Convolution"
convolution_param {
num_output: 128
kernel_size: 3
pad: 1
stride: 1
bias_term: false
}
param {
lr_mult: 1.0
}
}
layer {
bottom: "res3b_branch2b"
top: "res3b_branch2b"
name: "bn3b_branch2b"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res3b_branch2b"
top: "res3b_branch2b"
name: "scale3b_branch2b"
type: "Scale"
scale_param {
bias_term: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res3b_branch2b"
top: "res3b_branch2b"
name: "res3b_branch2b_relu"
type: "ReLU"
}
layer {
bottom: "res3b_branch2b"
top: "res3b_branch2c"
name: "res3b_branch2c"
type: "Convolution"
convolution_param {
num_output: 512
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
param {
lr_mult: 1.0
}
}
layer {
bottom: "res3b_branch2c"
top: "res3b_branch2c"
name: "bn3b_branch2c"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res3b_branch2c"
top: "res3b_branch2c"
name: "scale3b_branch2c"
type: "Scale"
scale_param {
bias_term: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res3a"
bottom: "res3b_branch2c"
top: "res3b"
name: "res3b"
type: "Eltwise"
}
layer {
bottom: "res3b"
top: "res3b"
name: "res3b_relu"
type: "ReLU"
}
layer {
bottom: "res3b"
top: "res3c_branch2a"
name: "res3c_branch2a"
type: "Convolution"
convolution_param {
num_output: 128
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
param {
lr_mult: 1.0
}
}
layer {
bottom: "res3c_branch2a"
top: "res3c_branch2a"
name: "bn3c_branch2a"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res3c_branch2a"
top: "res3c_branch2a"
name: "scale3c_branch2a"
type: "Scale"
scale_param {
bias_term: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res3c_branch2a"
top: "res3c_branch2a"
name: "res3c_branch2a_relu"
type: "ReLU"
}
layer {
bottom: "res3c_branch2a"
top: "res3c_branch2b"
name: "res3c_branch2b"
type: "Convolution"
convolution_param {
num_output: 128
kernel_size: 3
pad: 1
stride: 1
bias_term: false
}
param {
lr_mult: 1.0
}
}
layer {
bottom: "res3c_branch2b"
top: "res3c_branch2b"
name: "bn3c_branch2b"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res3c_branch2b"
top: "res3c_branch2b"
name: "scale3c_branch2b"
type: "Scale"
scale_param {
bias_term: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res3c_branch2b"
top: "res3c_branch2b"
name: "res3c_branch2b_relu"
type: "ReLU"
}
layer {
bottom: "res3c_branch2b"
top: "res3c_branch2c"
name: "res3c_branch2c"
type: "Convolution"
convolution_param {
num_output: 512
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
param {
lr_mult: 1.0
}
}
layer {
bottom: "res3c_branch2c"
top: "res3c_branch2c"
name: "bn3c_branch2c"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res3c_branch2c"
top: "res3c_branch2c"
name: "scale3c_branch2c"
type: "Scale"
scale_param {
bias_term: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res3b"
bottom: "res3c_branch2c"
top: "res3c"
name: "res3c"
type: "Eltwise"
}
layer {
bottom: "res3c"
top: "res3c"
name: "res3c_relu"
type: "ReLU"
}
layer {
bottom: "res3c"
top: "res3d_branch2a"
name: "res3d_branch2a"
type: "Convolution"
convolution_param {
num_output: 128
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
param {
lr_mult: 1.0
}
}
layer {
bottom: "res3d_branch2a"
top: "res3d_branch2a"
name: "bn3d_branch2a"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res3d_branch2a"
top: "res3d_branch2a"
name: "scale3d_branch2a"
type: "Scale"
scale_param {
bias_term: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res3d_branch2a"
top: "res3d_branch2a"
name: "res3d_branch2a_relu"
type: "ReLU"
}
layer {
bottom: "res3d_branch2a"
top: "res3d_branch2b"
name: "res3d_branch2b"
type: "Convolution"
convolution_param {
num_output: 128
kernel_size: 3
pad: 1
stride: 1
bias_term: false
}
param {
lr_mult: 1.0
}
}
layer {
bottom: "res3d_branch2b"
top: "res3d_branch2b"
name: "bn3d_branch2b"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res3d_branch2b"
top: "res3d_branch2b"
name: "scale3d_branch2b"
type: "Scale"
scale_param {
bias_term: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res3d_branch2b"
top: "res3d_branch2b"
name: "res3d_branch2b_relu"
type: "ReLU"
}
layer {
bottom: "res3d_branch2b"
top: "res3d_branch2c"
name: "res3d_branch2c"
type: "Convolution"
convolution_param {
num_output: 512
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
param {
lr_mult: 1.0
}
}
layer {
bottom: "res3d_branch2c"
top: "res3d_branch2c"
name: "bn3d_branch2c"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res3d_branch2c"
top: "res3d_branch2c"
name: "scale3d_branch2c"
type: "Scale"
scale_param {
bias_term: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res3c"
bottom: "res3d_branch2c"
top: "res3d"
name: "res3d"
type: "Eltwise"
}
layer {
bottom: "res3d"
top: "res3d"
name: "res3d_relu"
type: "ReLU"
}
layer {
bottom: "res3d"
top: "res4a_branch1"
name: "res4a_branch1"
type: "Convolution"
convolution_param {
num_output: 1024
kernel_size: 1
pad: 0
stride: 2
bias_term: false
}
param {
lr_mult: 1.0
}
}
layer {
bottom: "res4a_branch1"
top: "res4a_branch1"
name: "bn4a_branch1"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res4a_branch1"
top: "res4a_branch1"
name: "scale4a_branch1"
type: "Scale"
scale_param {
bias_term: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res3d"
top: "res4a_branch2a"
name: "res4a_branch2a"
type: "Convolution"
convolution_param {
num_output: 256
kernel_size: 1
pad: 0
stride: 2
bias_term: false
}
param {
lr_mult: 1.0
}
}
layer {
bottom: "res4a_branch2a"
top: "res4a_branch2a"
name: "bn4a_branch2a"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res4a_branch2a"
top: "res4a_branch2a"
name: "scale4a_branch2a"
type: "Scale"
scale_param {
bias_term: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res4a_branch2a"
top: "res4a_branch2a"
name: "res4a_branch2a_relu"
type: "ReLU"
}
layer {
bottom: "res4a_branch2a"
top: "res4a_branch2b"
name: "res4a_branch2b"
type: "Convolution"
convolution_param {
num_output: 256
kernel_size: 3
pad: 1
stride: 1
bias_term: false
}
param {
lr_mult: 1.0
}
}
layer {
bottom: "res4a_branch2b"
top: "res4a_branch2b"
name: "bn4a_branch2b"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res4a_branch2b"
top: "res4a_branch2b"
name: "scale4a_branch2b"
type: "Scale"
scale_param {
bias_term: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res4a_branch2b"
top: "res4a_branch2b"
name: "res4a_branch2b_relu"
type: "ReLU"
}
layer {
bottom: "res4a_branch2b"
top: "res4a_branch2c"
name: "res4a_branch2c"
type: "Convolution"
convolution_param {
num_output: 1024
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
param {
lr_mult: 1.0
}
}
layer {
bottom: "res4a_branch2c"
top: "res4a_branch2c"
name: "bn4a_branch2c"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res4a_branch2c"
top: "res4a_branch2c"
name: "scale4a_branch2c"
type: "Scale"
scale_param {
bias_term: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res4a_branch1"
bottom: "res4a_branch2c"
top: "res4a"
name: "res4a"
type: "Eltwise"
}
layer {
bottom: "res4a"
top: "res4a"
name: "res4a_relu"
type: "ReLU"
}
layer {
bottom: "res4a"
top: "res4b_branch2a"
name: "res4b_branch2a"
type: "Convolution"
convolution_param {
num_output: 256
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
param {
lr_mult: 1.0
}
}
layer {
bottom: "res4b_branch2a"
top: "res4b_branch2a"
name: "bn4b_branch2a"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res4b_branch2a"
top: "res4b_branch2a"
name: "scale4b_branch2a"
type: "Scale"
scale_param {
bias_term: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res4b_branch2a"
top: "res4b_branch2a"
name: "res4b_branch2a_relu"
type: "ReLU"
}
layer {
bottom: "res4b_branch2a"
top: "res4b_branch2b"
name: "res4b_branch2b"
type: "Convolution"
convolution_param {
num_output: 256
kernel_size: 3
pad: 1
stride: 1
bias_term: false
}
param {
lr_mult: 1.0
}
}
layer {
bottom: "res4b_branch2b"
top: "res4b_branch2b"
name: "bn4b_branch2b"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res4b_branch2b"
top: "res4b_branch2b"
name: "scale4b_branch2b"
type: "Scale"
scale_param {
bias_term: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res4b_branch2b"
top: "res4b_branch2b"
name: "res4b_branch2b_relu"
type: "ReLU"
}
layer {
bottom: "res4b_branch2b"
top: "res4b_branch2c"
name: "res4b_branch2c"
type: "Convolution"
convolution_param {
num_output: 1024
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
param {
lr_mult: 1.0
}
}
layer {
bottom: "res4b_branch2c"
top: "res4b_branch2c"
name: "bn4b_branch2c"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res4b_branch2c"
top: "res4b_branch2c"
name: "scale4b_branch2c"
type: "Scale"
scale_param {
bias_term: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res4a"
bottom: "res4b_branch2c"
top: "res4b"
name: "res4b"
type: "Eltwise"
}
layer {
bottom: "res4b"
top: "res4b"
name: "res4b_relu"
type: "ReLU"
}
layer {
bottom: "res4b"
top: "res4c_branch2a"
name: "res4c_branch2a"
type: "Convolution"
convolution_param {
num_output: 256
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
param {
lr_mult: 1.0
}
}
layer {
bottom: "res4c_branch2a"
top: "res4c_branch2a"
name: "bn4c_branch2a"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res4c_branch2a"
top: "res4c_branch2a"
name: "scale4c_branch2a"
type: "Scale"
scale_param {
bias_term: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res4c_branch2a"
top: "res4c_branch2a"
name: "res4c_branch2a_relu"
type: "ReLU"
}
layer {
bottom: "res4c_branch2a"
top: "res4c_branch2b"
name: "res4c_branch2b"
type: "Convolution"
convolution_param {
num_output: 256
kernel_size: 3
pad: 1
stride: 1
bias_term: false
}
param {
lr_mult: 1.0
}
}
layer {
bottom: "res4c_branch2b"
top: "res4c_branch2b"
name: "bn4c_branch2b"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res4c_branch2b"
top: "res4c_branch2b"
name: "scale4c_branch2b"
type: "Scale"
scale_param {
bias_term: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res4c_branch2b"
top: "res4c_branch2b"
name: "res4c_branch2b_relu"
type: "ReLU"
}
layer {
bottom: "res4c_branch2b"
top: "res4c_branch2c"
name: "res4c_branch2c"
type: "Convolution"
convolution_param {
num_output: 1024
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
param {
lr_mult: 1.0
}
}
layer {
bottom: "res4c_branch2c"
top: "res4c_branch2c"
name: "bn4c_branch2c"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res4c_branch2c"
top: "res4c_branch2c"
name: "scale4c_branch2c"
type: "Scale"
scale_param {
bias_term: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res4b"
bottom: "res4c_branch2c"
top: "res4c"
name: "res4c"
type: "Eltwise"
}
layer {
bottom: "res4c"
top: "res4c"
name: "res4c_relu"
type: "ReLU"
}
layer {
bottom: "res4c"
top: "res4d_branch2a"
name: "res4d_branch2a"
type: "Convolution"
convolution_param {
num_output: 256
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
param {
lr_mult: 1.0
}
}
layer {
bottom: "res4d_branch2a"
top: "res4d_branch2a"
name: "bn4d_branch2a"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res4d_branch2a"
top: "res4d_branch2a"
name: "scale4d_branch2a"
type: "Scale"
scale_param {
bias_term: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res4d_branch2a"
top: "res4d_branch2a"
name: "res4d_branch2a_relu"
type: "ReLU"
}
layer {
bottom: "res4d_branch2a"
top: "res4d_branch2b"
name: "res4d_branch2b"
type: "Convolution"
convolution_param {
num_output: 256
kernel_size: 3
pad: 1
stride: 1
bias_term: false
}
param {
lr_mult: 1.0
}
}
layer {
bottom: "res4d_branch2b"
top: "res4d_branch2b"
name: "bn4d_branch2b"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res4d_branch2b"
top: "res4d_branch2b"
name: "scale4d_branch2b"
type: "Scale"
scale_param {
bias_term: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res4d_branch2b"
top: "res4d_branch2b"
name: "res4d_branch2b_relu"
type: "ReLU"
}
layer {
bottom: "res4d_branch2b"
top: "res4d_branch2c"
name: "res4d_branch2c"
type: "Convolution"
convolution_param {
num_output: 1024
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
param {
lr_mult: 1.0
}
}
layer {
bottom: "res4d_branch2c"
top: "res4d_branch2c"
name: "bn4d_branch2c"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res4d_branch2c"
top: "res4d_branch2c"
name: "scale4d_branch2c"
type: "Scale"
scale_param {
bias_term: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res4c"
bottom: "res4d_branch2c"
top: "res4d"
name: "res4d"
type: "Eltwise"
}
layer {
bottom: "res4d"
top: "res4d"
name: "res4d_relu"
type: "ReLU"
}
layer {
bottom: "res4d"
top: "res4e_branch2a"
name: "res4e_branch2a"
type: "Convolution"
convolution_param {
num_output: 256
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
param {
lr_mult: 1.0
}
}
layer {
bottom: "res4e_branch2a"
top: "res4e_branch2a"
name: "bn4e_branch2a"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res4e_branch2a"
top: "res4e_branch2a"
name: "scale4e_branch2a"
type: "Scale"
scale_param {
bias_term: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res4e_branch2a"
top: "res4e_branch2a"
name: "res4e_branch2a_relu"
type: "ReLU"
}
layer {
bottom: "res4e_branch2a"
top: "res4e_branch2b"
name: "res4e_branch2b"
type: "Convolution"
convolution_param {
num_output: 256
kernel_size: 3
pad: 1
stride: 1
bias_term: false
}
param {
lr_mult: 1.0
}
}
layer {
bottom: "res4e_branch2b"
top: "res4e_branch2b"
name: "bn4e_branch2b"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res4e_branch2b"
top: "res4e_branch2b"
name: "scale4e_branch2b"
type: "Scale"
scale_param {
bias_term: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res4e_branch2b"
top: "res4e_branch2b"
name: "res4e_branch2b_relu"
type: "ReLU"
}
layer {
bottom: "res4e_branch2b"
top: "res4e_branch2c"
name: "res4e_branch2c"
type: "Convolution"
convolution_param {
num_output: 1024
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
param {
lr_mult: 1.0
}
}
layer {
bottom: "res4e_branch2c"
top: "res4e_branch2c"
name: "bn4e_branch2c"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res4e_branch2c"
top: "res4e_branch2c"
name: "scale4e_branch2c"
type: "Scale"
scale_param {
bias_term: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res4d"
bottom: "res4e_branch2c"
top: "res4e"
name: "res4e"
type: "Eltwise"
}
layer {
bottom: "res4e"
top: "res4e"
name: "res4e_relu"
type: "ReLU"
}
layer {
bottom: "res4e"
top: "res4f_branch2a"
name: "res4f_branch2a"
type: "Convolution"
convolution_param {
num_output: 256
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
param {
lr_mult: 1.0
}
}
layer {
bottom: "res4f_branch2a"
top: "res4f_branch2a"
name: "bn4f_branch2a"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res4f_branch2a"
top: "res4f_branch2a"
name: "scale4f_branch2a"
type: "Scale"
scale_param {
bias_term: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res4f_branch2a"
top: "res4f_branch2a"
name: "res4f_branch2a_relu"
type: "ReLU"
}
layer {
bottom: "res4f_branch2a"
top: "res4f_branch2b"
name: "res4f_branch2b"
type: "Convolution"
convolution_param {
num_output: 256
kernel_size: 3
pad: 1
stride: 1
bias_term: false
}
param {
lr_mult: 1.0
}
}
layer {
bottom: "res4f_branch2b"
top: "res4f_branch2b"
name: "bn4f_branch2b"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res4f_branch2b"
top: "res4f_branch2b"
name: "scale4f_branch2b"
type: "Scale"
scale_param {
bias_term: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res4f_branch2b"
top: "res4f_branch2b"
name: "res4f_branch2b_relu"
type: "ReLU"
}
layer {
bottom: "res4f_branch2b"
top: "res4f_branch2c"
name: "res4f_branch2c"
type: "Convolution"
convolution_param {
num_output: 1024
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
param {
lr_mult: 1.0
}
}
layer {
bottom: "res4f_branch2c"
top: "res4f_branch2c"
name: "bn4f_branch2c"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res4f_branch2c"
top: "res4f_branch2c"
name: "scale4f_branch2c"
type: "Scale"
scale_param {
bias_term: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res4e"
bottom: "res4f_branch2c"
top: "res4f"
name: "res4f"
type: "Eltwise"
}
layer {
bottom: "res4f"
top: "res4f"
name: "res4f_relu"
type: "ReLU"
}
layer {
bottom: "res4f"
top: "res5a_branch1"
name: "res5a_branch1"
type: "Convolution"
convolution_param {
num_output: 2048
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
param {
lr_mult: 1.0
}
}
layer {
bottom: "res5a_branch1"
top: "res5a_branch1"
name: "bn5a_branch1"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res5a_branch1"
top: "res5a_branch1"
name: "scale5a_branch1"
type: "Scale"
scale_param {
bias_term: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res4f"
top: "res5a_branch2a"
name: "res5a_branch2a"
type: "Convolution"
convolution_param {
num_output: 512
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
param {
lr_mult: 1.0
}
}
layer {
bottom: "res5a_branch2a"
top: "res5a_branch2a"
name: "bn5a_branch2a"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res5a_branch2a"
top: "res5a_branch2a"
name: "scale5a_branch2a"
type: "Scale"
scale_param {
bias_term: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res5a_branch2a"
top: "res5a_branch2a"
name: "res5a_branch2a_relu"
type: "ReLU"
}
layer {
bottom: "res5a_branch2a"
top: "res5a_branch2b"
name: "res5a_branch2b"
type: "Convolution"
convolution_param {
num_output: 512
kernel_size: 3
dilation: 2
pad: 2
stride: 1
bias_term: false
}
param {
lr_mult: 1.0
}
}
layer {
bottom: "res5a_branch2b"
top: "res5a_branch2b"
name: "bn5a_branch2b"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res5a_branch2b"
top: "res5a_branch2b"
name: "scale5a_branch2b"
type: "Scale"
scale_param {
bias_term: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res5a_branch2b"
top: "res5a_branch2b"
name: "res5a_branch2b_relu"
type: "ReLU"
}
layer {
bottom: "res5a_branch2b"
top: "res5a_branch2c"
name: "res5a_branch2c"
type: "Convolution"
convolution_param {
num_output: 2048
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
param {
lr_mult: 1.0
}
}
layer {
bottom: "res5a_branch2c"
top: "res5a_branch2c"
name: "bn5a_branch2c"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res5a_branch2c"
top: "res5a_branch2c"
name: "scale5a_branch2c"
type: "Scale"
scale_param {
bias_term: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res5a_branch1"
bottom: "res5a_branch2c"
top: "res5a"
name: "res5a"
type: "Eltwise"
}
layer {
bottom: "res5a"
top: "res5a"
name: "res5a_relu"
type: "ReLU"
}
layer {
bottom: "res5a"
top: "res5b_branch2a"
name: "res5b_branch2a"
type: "Convolution"
convolution_param {
num_output: 512
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
param {
lr_mult: 1.0
}
}
layer {
bottom: "res5b_branch2a"
top: "res5b_branch2a"
name: "bn5b_branch2a"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res5b_branch2a"
top: "res5b_branch2a"
name: "scale5b_branch2a"
type: "Scale"
scale_param {
bias_term: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res5b_branch2a"
top: "res5b_branch2a"
name: "res5b_branch2a_relu"
type: "ReLU"
}
layer {
bottom: "res5b_branch2a"
top: "res5b_branch2b"
name: "res5b_branch2b"
type: "Convolution"
convolution_param {
num_output: 512
kernel_size: 3
dilation: 2
pad: 2
stride: 1
bias_term: false
}
param {
lr_mult: 1.0
}
}
layer {
bottom: "res5b_branch2b"
top: "res5b_branch2b"
name: "bn5b_branch2b"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res5b_branch2b"
top: "res5b_branch2b"
name: "scale5b_branch2b"
type: "Scale"
scale_param {
bias_term: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res5b_branch2b"
top: "res5b_branch2b"
name: "res5b_branch2b_relu"
type: "ReLU"
}
layer {
bottom: "res5b_branch2b"
top: "res5b_branch2c"
name: "res5b_branch2c"
type: "Convolution"
convolution_param {
num_output: 2048
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
param {
lr_mult: 1.0
}
}
layer {
bottom: "res5b_branch2c"
top: "res5b_branch2c"
name: "bn5b_branch2c"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res5b_branch2c"
top: "res5b_branch2c"
name: "scale5b_branch2c"
type: "Scale"
scale_param {
bias_term: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res5a"
bottom: "res5b_branch2c"
top: "res5b"
name: "res5b"
type: "Eltwise"
}
layer {
bottom: "res5b"
top: "res5b"
name: "res5b_relu"
type: "ReLU"
}
layer {
bottom: "res5b"
top: "res5c_branch2a"
name: "res5c_branch2a"
type: "Convolution"
convolution_param {
num_output: 512
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
param {
lr_mult: 1.0
}
}
layer {
bottom: "res5c_branch2a"
top: "res5c_branch2a"
name: "bn5c_branch2a"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res5c_branch2a"
top: "res5c_branch2a"
name: "scale5c_branch2a"
type: "Scale"
scale_param {
bias_term: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res5c_branch2a"
top: "res5c_branch2a"
name: "res5c_branch2a_relu"
type: "ReLU"
}
layer {
bottom: "res5c_branch2a"
top: "res5c_branch2b"
name: "res5c_branch2b"
type: "Convolution"
convolution_param {
num_output: 512
kernel_size: 3
dilation: 2
pad: 2
stride: 1
bias_term: false
}
param {
lr_mult: 1.0
}
}
layer {
bottom: "res5c_branch2b"
top: "res5c_branch2b"
name: "bn5c_branch2b"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res5c_branch2b"
top: "res5c_branch2b"
name: "scale5c_branch2b"
type: "Scale"
scale_param {
bias_term: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res5c_branch2b"
top: "res5c_branch2b"
name: "res5c_branch2b_relu"
type: "ReLU"
}
layer {
bottom: "res5c_branch2b"
top: "res5c_branch2c"
name: "res5c_branch2c"
type: "Convolution"
convolution_param {
num_output: 2048
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
param {
lr_mult: 1.0
}
}
layer {
bottom: "res5c_branch2c"
top: "res5c_branch2c"
name: "bn5c_branch2c"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res5c_branch2c"
top: "res5c_branch2c"
name: "scale5c_branch2c"
type: "Scale"
scale_param {
bias_term: true
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
bottom: "res5b"
bottom: "res5c_branch2c"
top: "res5c"
name: "res5c"
type: "Eltwise"
}
layer {
bottom: "res5c"
top: "res5c"
name: "res5c_relu"
type: "ReLU"
}
#----------------------new conv layer------------------
layer {
bottom: "res5c"
top: "conv_new_1"
name: "conv_new_1"
type: "Convolution"
convolution_param {
num_output: 1024
kernel_size: 1
pad: 0
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0
}
}
param {
lr_mult: 1.0
}
param {
lr_mult: 2.0
}
}
layer {
bottom: "conv_new_1"
top: "conv_new_1"
name: "conv_new_1_relu"
type: "ReLU"
}
layer {
bottom: "conv_new_1"
top: "rfcn_cls"
name: "rfcn_cls"
type: "Convolution"
convolution_param {
num_output: 1029 #21*(7^2) cls_num*(score_maps_size^2)
kernel_size: 1
pad: 0
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0
}
}
param {
lr_mult: 1.0
}
param {
lr_mult: 2.0
}
}
layer {
bottom: "conv_new_1"
top: "rfcn_bbox"
name: "rfcn_bbox"
type: "Convolution"
convolution_param {
num_output: 392 #8*(7^2) cls_num*(score_maps_size^2)
kernel_size: 1
pad: 0
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0
}
}
param {
lr_mult: 1.0
}
param {
lr_mult: 2.0
}
}
#--------------position sensitive RoI pooling--------------
layer {
bottom: "rfcn_cls"
bottom: "rois"
top: "psroipooled_cls_rois"
name: "psroipooled_cls_rois"
type: "PSROIPooling"
psroi_pooling_param {
spatial_scale: 0.0625
output_dim: 21
group_size: 7
}
}
layer {
bottom: "psroipooled_cls_rois"
top: "cls_score"
name: "ave_cls_score_rois"
type: "Pooling"
pooling_param {
pool: AVE
kernel_size: 7
stride: 7
}
}
layer {
bottom: "rfcn_bbox"
bottom: "rois"
top: "psroipooled_loc_rois"
name: "psroipooled_loc_rois"
type: "PSROIPooling"
psroi_pooling_param {
spatial_scale: 0.0625
output_dim: 8
group_size: 7
}
}
layer {
bottom: "psroipooled_loc_rois"
top: "bbox_pred"
name: "ave_bbox_pred_rois"
type: "Pooling"
pooling_param {
pool: AVE
kernel_size: 7
stride: 7
}
}
#-----------------------output------------------------
layer {
name: "cls_prob"
type: "Softmax"
bottom: "cls_score"
top: "cls_prob"
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment