Skip to content

Instantly share code, notes, and snippets.

@xmfbit
Created September 24, 2016 06:24
Show Gist options
  • Save xmfbit/97e19159d11bc2568920e8c9a756d5eb to your computer and use it in GitHub Desktop.
Save xmfbit/97e19159d11bc2568920e8c9a756d5eb to your computer and use it in GitHub Desktop.
multi_cnn_net
name: "fit_net"
layer {
name: "data"
type: "WindowPartitionData"
top: "data"
top: "param"
top: "label"
top: "mask"
param_data_param {
source: "/home/[email protected]/exp/lane_fit/data/train_list.txt"
batch_size: 32
height: 300
width: 260
num_group_params: 26
poly_degree: 2
splitflag: "|"
root_folder: ""
shuffle: false
rand_skip: 0
param_mean: -9.48654360e-07
param_mean: -5.82578266e-03
param_mean: 1.25206429e+02
param_std: 1.40006305e-04
param_std: 6.67716265e-02
param_std: 3.63744431e+01
}
transform_param {
force_color: false
scale: 0.00390625
mean_value: 128
}
}
layer {
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
param{
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 1
}
convolution_param {
num_output: 32
kernel_size: 5
stride: 2
group : 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value:0
}
}
}
layer {
name: "relu1"
type: "PReLU"
bottom: "conv1"
top: "conv1"
relu_param{
negative_slope: 0.0
}
}
layer {
name: "pool1"
type: "Pooling"
bottom: "conv1"
top: "pool1"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "conv2"
type: "Convolution"
bottom: "pool1"
top: "conv2"
param{
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_size: 3
stride: 1
group : 1
pad : 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value:0
}
}
}
layer {
name: "relu2"
type: "PReLU"
bottom: "conv2"
top: "conv2"
relu_param{
negative_slope:0.0
}
}
layer {
name: "pool2"
type: "Pooling"
bottom: "conv2"
top: "pool2"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "conv3"
type: "Convolution"
bottom: "pool2"
top: "conv3"
param{
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 1
}
convolution_param {
num_output: 128
kernel_size: 3
stride: 1
group : 1
pad : 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value:0
}
}
}
layer {
name: "relu3"
type: "PReLU"
bottom: "conv3"
top: "conv3"
relu_param{
negative_slope:0.0
}
}
layer {
name: "conv4"
type: "Convolution"
bottom: "conv3"
top: "conv4"
param{
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 1
}
convolution_param {
num_output: 128
kernel_size: 2
stride: 1
group : 1
pad : 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value:0
}
}
}
layer {
name: "relu4"
type: "PReLU"
bottom: "conv4"
top: "conv4"
relu_param{
negative_slope: 0.0
}
}
layer {
name: "conv5"
type: "Convolution"
bottom: "conv4"
top: "conv5"
param{
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 1
}
convolution_param {
num_output: 128
kernel_size: 3
stride: 1
group : 1
pad : 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value:0
}
}
}
layer {
name: "relu5"
type: "PReLU"
bottom: "conv5"
top: "conv5"
relu_param{
negative_slope: 0.0
}
}
layer {
name: "pool5"
type: "Pooling"
bottom: "conv5"
top: "pool5"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "ip1"
type: "InnerProduct"
bottom: "pool5"
top: "ip1"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
inner_product_param {
num_output: 512
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "ip2"
type: "InnerProduct"
bottom: "ip1"
top: "ip2"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
inner_product_param {
num_output: 256
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "ip3"
type: "InnerProduct"
bottom: "ip2"
top: "ip3"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
inner_product_param {
num_output: 52
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "ip4"
type: "InnerProduct"
bottom: "ip2"
top: "ip4"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
inner_product_param {
num_output: 78
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "reshape_fc3"
type: "Reshape"
bottom: "ip3"
top: "reshape_ip3"
reshape_param { shape { dim: -1 dim: 2 dim: 26 dim: 1} }
}
layer {
name: "loss_cls"
type: "SoftmaxWithLoss"
bottom: "reshape_ip3"
bottom: "label"
top: "loss_cls"
loss_weight: 1.0
}
layer {
name: "loss_reg"
#type: "EuclideanLossWithMask" # 震荡
type: "SmoothL1Loss"
bottom: "ip4"
bottom: "param"
bottom: "mask"
top: "loss_reg"
loss_weight: 1
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment