Created
November 3, 2021 23:24
-
-
Save xmodar/291248803b87cc586edebb570f098d7e to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
"""Invertible BatchNorm""" | |
import torch | |
from torch import nn | |
class NonZero(nn.Module): | |
"""Parameterization to force the values to be nonzero""" | |
def __init__(self, eps=1e-5, preserve_sign=True): | |
super().__init__() | |
self.eps, self.preserve_sign = eps, preserve_sign | |
def forward(self, inputs): | |
"""Perform the forward pass""" | |
eps = torch.tensor(self.eps, dtype=inputs.dtype, device=inputs.device) | |
if self.preserve_sign: | |
eps = torch.where(inputs < 0, -eps, eps) | |
return inputs.where(inputs.detach().abs() > self.eps, eps) | |
class InvertibleBatchNorm(nn.Module): | |
"""Invertible batchnorm layer (inverse doesn't update running stats)""" | |
def __init__(self, batch_norm): | |
super().__init__() | |
self.batch_norm = batch_norm | |
self.non_zero = NonZero(self.eps / 100) | |
def forward(self, inputs): | |
"""Perform the forward pass""" | |
# get/compute stats | |
if self.training or not self.track_running_stats: | |
dim = tuple(set(range(inputs.ndim)) - {1}) | |
var, mean = torch.var_mean(inputs.detach(), dim, unbiased=False) | |
else: | |
var, mean = self.running_var, self.running_mean | |
# compute output | |
shape = (mean.numel(), ) + (1, ) * (inputs.ndim - 2) | |
out = (inputs - mean.view(shape)) / (var.view(shape) + self.eps).sqrt() | |
if self.affine: | |
self.weight.data.copy_(self.non_zero(self.weight.data)) | |
out = self.weight.view(shape) * out + self.bias.view(shape) | |
# update stats | |
if self.training and self.track_running_stats: | |
self.batch_norm.num_batches_tracked = self.num_batches_tracked + 1 | |
if self.momentum is None: | |
factor = 1 / self.num_batches_tracked | |
else: | |
factor = self.momentum | |
unbias = inputs.numel() / (inputs.numel() - var.numel()) | |
self.running_mean.mul_(1 - factor).add_(factor * mean) | |
self.running_var.mul_(1 - factor).add_(factor * unbias * var) | |
return out, mean, var | |
def inverse(self, inputs, mean, var): | |
"""Perform the inverse pass""" | |
shape = (mean.numel(), ) + (1, ) * (inputs.ndim - 2) | |
if self.affine: | |
inputs = (inputs - self.bias.view(shape)) / self.weight.view(shape) | |
return inputs * (var.view(shape) + self.eps).sqrt() + mean.view(shape) | |
def __getattr__(self, name): | |
try: | |
return super().__getattr__(name) | |
except AttributeError: | |
return getattr(self.batch_norm, name) | |
@torch.no_grad() | |
def _test(): | |
count, total = 0, 1000 | |
for _ in range(total): | |
norm = InvertibleBatchNorm(nn.BatchNorm2d(3, momentum=1)) | |
if norm.affine: | |
norm.weight.detach().normal_(0, 10) | |
norm.bias.detach().normal_() | |
shape = (2, norm.batch_norm.num_features, 5, 5) | |
if norm.track_running_stats: | |
for _ in range(3): | |
norm(torch.randn(shape)) | |
norm.eval() | |
inputs = torch.randn(shape) | |
count += torch.allclose(inputs, norm.inverse(*norm(inputs)), atol=1e-5) | |
print(f'correct {count / total * 100:.2f}% of the time') | |
if __name__ == '__main__': | |
_test() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment