Last active
July 28, 2025 06:16
-
-
Save y011d4/7b93a01f37c66aee2c27fd732126958a to your computer and use it in GitHub Desktop.
simple CSIDH implementation. DO NOT use for cryptographic purpose.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| # Use a small prime for brevity | |
| p = 4 * 3 * 5 * 7 - 1 | |
| primes = [3, 5, 7] | |
| Fp = GF(p) | |
| def from_weierstrass(EC): | |
| a, b = EC.a4(), EC.a6() | |
| F = EC.base_field() | |
| PR = PolynomialRing(F, name="z") | |
| z = PR.gens()[0] | |
| roots = (z**3 + a*z + b).roots() | |
| assert len(roots) > 0 | |
| alpha = roots[0][0] | |
| s = (3*alpha**2 + a).sqrt() ** (-1) | |
| return -3 * (-1)**s.is_square() * alpha * s | |
| def to_weierstrass(A): | |
| B = 1 | |
| a = (3 - A**2) * pow(3 * B**2, -1, p) | |
| b = (2 * A**3 - 9 * A) * pow(27 * B**3, -1, p) | |
| return EllipticCurve(Fp, [a, b]) | |
| def group_action(pub, priv): | |
| es = priv.copy() | |
| A = pub | |
| assert len(es) == len(primes) | |
| EC = to_weierstrass(A) | |
| while True: | |
| if all(e == 0 for e in es): | |
| break | |
| x = Fp(randint(1, p-1)) | |
| r = Fp(x ** 3 + A * x ** 2 + x) | |
| s = kronecker_symbol(r, p) | |
| assert (2 * is_square(r)) - 1 == s | |
| I = [i for i, e in enumerate(es) if sign(e) == s] | |
| if len(I) == 0: | |
| continue | |
| if s == -1: | |
| EC = EC.quadratic_twist() | |
| while True: | |
| tmp = EC.random_element() | |
| if not tmp.is_zero(): | |
| break | |
| x = tmp.xy()[0] | |
| t = prod([primes[i] for i in I]) | |
| P = EC.lift_x(x) | |
| assert (p + 1) % t == 0 | |
| Q = ((p + 1) // t) * P | |
| for i in I: | |
| assert t % primes[i] == 0 | |
| R = (t // primes[i]) * Q | |
| if R.is_zero(): | |
| continue | |
| phi = EC.isogeny(R) | |
| EC = phi.codomain() | |
| Q = phi(Q) | |
| assert t % primes[i] == 0 | |
| t = t // primes[i] | |
| es[i] -= s | |
| if s == -1: | |
| EC = EC.quadratic_twist() | |
| return from_weierstrass(EC) | |
| for _ in range(100): | |
| alice_priv = [randrange(-5, 6) for _ in range(len(primes))] | |
| bob_priv = [randrange(-5, 6) for _ in range(len(primes))] | |
| alice_pub = group_action(0, alice_priv) | |
| bob_pub = group_action(0, bob_priv) | |
| alice_shared = group_action(bob_pub, alice_priv) | |
| bob_shared = group_action(alice_pub, bob_priv) | |
| assert alice_shared == bob_shared |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
https://gist.github.com/y011d4/7b93a01f37c66aee2c27fd732126958a/revisions#diff-29d82b6781aedbe6f187ffba258ed7085240aeb267495886657b6f1175be5c71
Bis not needed to be randomized, so I modified so that B = 1.(thanks to @mitsu1119's advice)