Last active
March 22, 2017 12:12
-
-
Save yabyzq/13943b3b35902b380c91acfa4c59878e to your computer and use it in GitHub Desktop.
SOM
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# based on Manuel Bernal's code | |
######## SOM GENERATOR ########### | |
#Loading Packages needed | |
library(png) # For writePNG function | |
library(kohonen) | |
library(shiny) | |
library(ggplot2) | |
library(jsonlite) | |
library(Hmisc) | |
library(gridExtra) | |
options(shiny.maxRequestSize = 500 * 1024 ^ 2)#maximum 500mb file | |
#Start shiny server | |
shinyServer(function(input, output, session) { | |
#Reading file, inputs must be numeric | |
dataInput <- reactive({ | |
inFile <- input$file1 | |
players <- read.csv(inFile$datapath, header = input$header, sep = input$sep, | |
stringsAsFactors = FALSE) | |
}) | |
#Generate SOM | |
generateSOM <- reactive({ | |
head(dataInput()) | |
set.seed(1234) | |
som(scale(dataInput()), grid = somgrid(input$slider1, input$slider2, input$fig)) #fig in "rectangular", "hexagonal" | |
}) | |
#Generate Graphs | |
generateGraph <- function(){ | |
if (is.null(input$file1)) | |
return(NULL) | |
else{ | |
coolBlueHotRed <- function(n, alpha = 1) { | |
rainbow(n, end = 4 / 6, alpha = alpha)[n:1] | |
} | |
plot(generateSOM(), type = input$select, main = "SOM", palette.name = coolBlueHotRed) | |
} | |
} | |
#Converts SOM to table | |
somToTable <- function(){ | |
as.table( as.matrix(generateSOM()) ) | |
} | |
#RenderGraph | |
output$visual <- renderPlot({ | |
generateGraph() | |
} | |
,height = 800, width = 800 ) | |
#DownloadImpage | |
output$downloadData <- downloadHandler( | |
filename = "shiny_som_plot.png", | |
content = function(file) { | |
png(file, width = 800, height = 800) | |
generateGraph() | |
dev.off() | |
}) | |
#Download structure | |
output$downloadTabla <- downloadHandler( | |
filename = "shiny_som_data.csv", | |
content = function(file) { | |
write.table(somToTable(), file, sep = ",",row.names = FALSE) | |
} | |
) | |
output$table <- DT::renderDataTable( | |
if (is.null(input$file1)) | |
return(NULL) | |
else{ | |
DT::datatable(dataInput(), options = list(searching = FALSE)) | |
} | |
) | |
output$histogram <- renderPlot({ | |
if (is.null(input$file1)) | |
return(NULL) | |
else { | |
hist.data.frame(dataInput()) | |
} | |
}, height = 800, width = 800) | |
output$property <- renderPlot({ | |
if (is.null(input$file1)) | |
return(NULL) | |
else{ | |
coolBlueHotRed <- function(n, alpha = 0.5) {rainbow(n, end = 4/6, alpha = alpha)[n:1]} | |
som_model <- generateSOM() | |
col <- ncol(som_model$data) | |
if (col > 9) {par(mfrow = c(4, 4))} | |
else if (col > 4) {par(mfrow = c(3, 3))} | |
else {par(mfrow = c(2, 2))} | |
for (i in 1:min(col, 9)) { | |
#plot(som_model, type = "property", property = som_model$codes[,i], main = colnames(som_model$data)[i], palette.name = coolBlueHotRed) | |
var_unscaled <- aggregate(as.numeric(dataInput()[[i]]), by=list(som_model$unit.classif), FUN=mean, simplify=TRUE) | |
names(var_unscaled) <- c("Node", "Value") # Add in NA values for non-assigned nodes. | |
# find missing nodes | |
missingNodes <- which(!(seq(1,nrow(som_model$codes)) %in% var_unscaled$Node)) | |
# Add them to the unscaled variable data frame | |
var_unscaled <- rbind(var_unscaled, data.frame(Node=missingNodes, Value=NA)) | |
# order this data frame | |
var_unscaled <- var_unscaled[order(var_unscaled$Node),] | |
impute_var_unscaled <- cbind(var_unscaled, normalised = som_model$codes[,i]) | |
impute_arg <- aregImpute(normalised ~ Value, data = impute_var_unscaled, n.impute = 1) | |
impute_var_unscaled[is.na(impute_var_unscaled$Value),]<-impute_arg$imputed$Value | |
plot(som_model, type = "property", property=impute_var_unscaled$Value, main=colnames(som_model$data)[i], palette.name=coolBlueHotRed) | |
} | |
} | |
} | |
, height = 800, width = 800 ) | |
output$cluster <- renderPlot({ | |
if (is.null(input$file1)) | |
return(NULL) | |
else{ | |
som_model <- generateSOM() | |
som_cluster <- cutree(hclust(dist(som_model$codes)), input$clusterSize) | |
pretty_palette <- c("#1f77b4", "#ff7f0e", "#2ca02c", "#d62728", "#9467bd", "#8c564b", "#e377c2", "#76b7b2") | |
if (input$clusterChart) { | |
par(mfrow = c(2, 2)) | |
codes <- som_model$codes | |
wss <- (nrow(codes) - 1) * sum(apply(codes, 2, var)) | |
for (i in 2:15) { | |
wss[i] <- sum(kmeans(codes, centers = i)$withinss) | |
} | |
plot(wss, main = "Cluster WSS", xlab = "no of clusters", cex = 2, pch = 19) | |
#plot.new() | |
pca <- prcomp(som_model$codes, center = TRUE, scale. = TRUE) | |
plot(pca$x[, 1], pca$x[, 2],col = som_cluster, pch = 19, cex =2, main = "PCA", xlab = "PC1", ylab = "PC2") | |
}else{ | |
par(mfrow = c(1, 2)) | |
} | |
plot(som_model, type = "codes", main = "SOM Code") | |
plot(som_model, type = "mapping", bgcol = pretty_palette[som_cluster], main = "Clusters") | |
add.cluster.boundaries(som_model, som_cluster) | |
} | |
} | |
, height = 800, width = 800 ) | |
output$info <- renderText({ | |
if (is.null(input$file1) | is.null(input$plot_click)) | |
return(NULL) | |
else { | |
x <- 1 | |
y <- 4.82 | |
xmax <- 6 | |
ymax <- 0.36 | |
y_offset <- (ymax - y) / 5 | |
yn <- ceiling( (input$plot_click$y - y) / y_offset) | |
if (yn %% 2 == 0) { | |
x <- x - 0.5 | |
xmax <- xmax - 0.5 | |
} | |
x_offset <- (xmax - x) / 5 | |
xn <- ceiling( (input$plot_click$x - x) / x_offset) | |
paste0("x=", input$plot_click$x, "\ny=", input$plot_click$y, "\ncell = ", xn, ",", yn ) | |
# grid <- som_model$grid$pts | |
# gridFrame <- data.frame(xvar = grid[,1], yvar = grid[,2]) | |
# print(str(gridFrame)) | |
# print(nearPoints(som_model, input$plot_click, xvar = "xvar", yvar = "yvar", maxpoints = 1)) | |
} | |
}) | |
output$distribution <- renderPlot({ | |
if (is.null(input$file1) | is.null(input$plot_click)) | |
return(NULL) | |
else{ | |
x <- 1 | |
y <- 4.82 | |
xmax <- 6 | |
ymax <- 0.36 | |
y_offset <- (ymax - y) / 5 | |
yn <- ceiling( (input$plot_click$y - y) / y_offset) | |
if (yn %% 2 == 0) { | |
x <- x - 0.5 | |
xmax <- xmax - 0.5 | |
} | |
x_offset <- (xmax - x) / 5 | |
xn <- ceiling( (input$plot_click$x - x) / x_offset) | |
som_model <- generateSOM() | |
population <- cbind(dataInput(), som = som_model$unit.classif) | |
column <- input$slider1 | |
index <- xn + (yn - 1) * column | |
print(index) | |
cell <- population[population$som == index, ] | |
combined <- rbind(cbind(population, label = "population"), cbind(cell, label = "cell")) | |
par(mfrow = c(2, 2)) | |
p1 <- ggplot(combined, aes(x = combined[, 1]) ) + geom_density(aes(fill = label), alpha = 0.2) + xlab(names(combined)[1]) + guides(fill = FALSE) | |
p2 <- ggplot(combined, aes(x = combined[, 2]) ) + geom_density(aes(fill = label), alpha = 0.2) + xlab(names(combined)[2]) + guides(fill = FALSE) | |
p3 <- ggplot(combined, aes(x = combined[, 3]) ) + geom_density(aes(fill = label), alpha = 0.2) + xlab(names(combined)[3]) + guides(fill = FALSE) | |
p4 <- ggplot(combined, aes(x = combined[, 4]) ) + geom_density(aes(fill = label), alpha = 0.2) + xlab(names(combined)[4]) + guides(fill = FALSE) | |
grid.arrange(p1, p2, p3, p4, ncol = 2) | |
} | |
}) | |
}) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment