Created
July 7, 2017 04:38
-
-
Save yabyzq/a0f8b2bef3e45258b5f39ee2034194fe to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
require(mlbench) | |
require(caret) | |
require(MLmetrics) | |
require(plyr) | |
require(ade4) | |
data(Satellite) | |
summary(Satellite) | |
dim(Satellite) | |
my_data <- Satellite | |
my_labels <- c('cc','non_cc') | |
my_data$classes <- ifelse(my_data$classes == 'cotton crop',1,0) | |
my_data$classes <- factor( | |
my_data$classes, | |
levels = 1:0, | |
labels = my_labels | |
) | |
summary(my_data$classes) | |
set.seed(1234) | |
ind <- createDataPartition(my_data$classes, p = 0.3, list = FALSE) | |
train_data <- my_data[ind,] | |
test_data <- my_data[-ind,] | |
test_data_label <- ifelse(test_data$classes == my_labels[1], 1, 0) | |
my_fit <- trainControl( | |
method = "cv", | |
classProbs = T | |
) | |
xgb_grid <- expand.grid( | |
nrounds = c(50), | |
eta = c(0.05, 0.1) , | |
gamma = 0, | |
max_depth = c(1,2,3), | |
colsample_bytree =c(0.5,1), | |
min_child_weight = 1, | |
subsample = c(0.7) | |
) | |
#xgboost | |
xgb_model <- train( | |
classes ~ ., | |
data = train_data, | |
method = 'xgbTree', | |
trControl = my_fit, | |
tuneGrid = xgb_grid, | |
verbose = F, | |
#metric = 'Prec', | |
metric = 'Accuracy', | |
nthread = 4 | |
) | |
xgb_pred <- predict(xgb_model, test_data, type = 'raw') | |
xgb_pred_prob <- predict(xgb_model, test_data, type = 'prob') | |
confusionMatrix(xgb_pred, test_data$classes) | |
#lr | |
lr_grid <- expand.grid( | |
alpha = c(0,0.3,1), | |
lambda = c(0.01,0.1,0.3) | |
) | |
lr_model <- train( | |
classes~., | |
data = train_data, | |
method = 'glmnet', | |
trControl = my_fit, | |
tuneGrid = lr_grid, | |
#metric = 'Prec', | |
metric = 'Accuracy', | |
standardize = T | |
) | |
lr_pred <- predict(lr_model, test_data, type = 'raw') | |
lr_pred_prob <- predict(lr_model, test_data, type = 'prob') | |
confusionMatrix(lr_pred, test_data$classes) | |
#combine | |
my_data_encode <- xgb.create.features( | |
xgb_model$finalModel, | |
as.matrix(my_data[,1:(ncol(my_data)-1)]) | |
) | |
my_data_encode <- as.data.frame(as.matrix(my_data_encode)) | |
names(my_data_encode) <- paste("f",1:ncol(my_data_encode),sep='') | |
my_data_encode$classes <- my_data$classes | |
train_data_encode <- my_data_encode[ind,] | |
test_data_encode <- my_data_encode[-ind,] | |
lr_model_combine <- train( | |
classes~., | |
data = train_data_encode, | |
method = 'glmnet', | |
trControl = my_fit, | |
tuneGrid = lr_grid, | |
#metric = 'Prec', | |
metric = 'Accuracy', | |
standardize = T | |
) | |
lr_pred_combine <- predict(lr_model_combine, test_data_encode, type = 'raw') | |
lr_pred_prob_combine <- predict(lr_model_combine, test_data_encode, type = 'prob') | |
confusionMatrix(lr_pred_combine, test_data$classes) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment