Last active
February 25, 2016 21:58
-
-
Save yakovenkodenis/0b691912ffb8ab29ac80 to your computer and use it in GitHub Desktop.
Encryptor, decryptor and cracker for the Ceasar cipher
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
def cipher(text, alphabet='abcdefghijklmnopqrstuvwxyz', key=0): | |
result = "" | |
alphabet = alphabet.lower() | |
n = len(alphabet) | |
for char in text: | |
if char.isalpha(): | |
new_char = alphabet[(alphabet.find(char.lower()) + key) % n] | |
result += new_char if char.islower() else new_char.upper() | |
else: | |
result += char | |
return result | |
def decipher(text, alphabet='abcdefghijklmnopqrstuvwxyz', key=0): | |
result = "" | |
alphabet = alphabet.lower() | |
n = len(alphabet) | |
for char in text: | |
if char.isalpha(): | |
new_char = alphabet[(alphabet.find(char.lower()) - key + n) % n] | |
result += new_char if char.islower() else new_char.upper() | |
else: | |
result += char | |
return result | |
def test_ceasar_cipher(): | |
alphabet = 'АБВГДЕЁЖЗИЙКЛМНОПРСТУФХЦЧШЩЪЫЬЭЮЯ' | |
text = 'Съешь же ещё этих мягких французских булок, да выпей чаю.' | |
key = 3 | |
ciphered_phrase = cipher(text, alphabet, key) | |
print(ciphered_phrase) | |
deciphered_phrase = decipher(ciphered_phrase, alphabet, key) | |
print(deciphered_phrase) | |
# ========= Ceasar cipher cracker =========== | |
ENGLISH_FREQS = [ | |
0.08167, 0.01492, 0.02782, 0.04253, 0.12702, 0.02228, | |
0.02015, 0.06094, 0.06966, 0.00153, 0.00772, 0.04025, | |
0.02406, 0.06749, 0.07507, 0.01929, 0.00095, 0.05987, | |
0.06327, 0.09056, 0.02758, 0.00978, 0.02360, 0.00150, | |
0.01974, 0.00074 | |
] | |
# Returns the cross-entropy of the given string with respect to | |
# the English unigram frequencies, which is a positive | |
# floating-point number. | |
def get_entropy(str): | |
sum, ignored = 0, 0 | |
for c in str: | |
if c.isalpha(): | |
sum += np.log(ENGLISH_FREQS[ord(c.lower()) - 97]) | |
else: | |
ignored += 1 | |
return -sum / np.log(2) / (len(str) - ignored) | |
# Returns the entropies when the given string is decrypted with | |
# all 26 possible shifts, where the result is an array of tuples | |
# (int shift, float enptroy) - | |
# e.g. [(0, 2.01), (1, 4.95), ..., (25, 3.73)]. | |
def get_all_entropies(str): | |
result = [] | |
for i in range(0, 26): | |
result.append((i, get_entropy(decipher(str, key=i)))) | |
return result | |
def cmp_to_key(mycmp): | |
'Convert a cmp= function into a key= function' | |
class K(object): | |
def __init__(self, obj, *args): | |
self.obj = obj | |
def __lt__(self, other): | |
return mycmp(self.obj, other.obj) < 0 | |
def __gt__(self, other): | |
return mycmp(self.obj, other.obj) > 0 | |
def __eq__(self, other): | |
return mycmp(self.obj, other.obj) == 0 | |
def __le__(self, other): | |
return mycmp(self.obj, other.obj) <= 0 | |
def __ge__(self, other): | |
return mycmp(self.obj, other.obj) >= 0 | |
def __ne__(self, other): | |
return mycmp(self.obj, other.obj) != 0 | |
return K | |
def comparator(x, y): | |
if x[1] < y[1]: | |
return -1 | |
elif x[1] > y[1]: | |
return 1 | |
elif x[0] < y[0]: | |
return -1 | |
elif x[0] > y[0]: | |
return 1 | |
else: | |
return 0 | |
def crack_ceasar(text): | |
entropies = get_all_entropies(text) | |
entropies.sort(key=cmp_to_key(comparator)) | |
best_shift = entropies[0][0] | |
cracked_val = decipher(text, key=best_shift) | |
print("Best guess:") | |
print("%d rotations\nDecrypted text: %s" % (best_shift, cracked_val)) | |
print("=========\nFull circle:") | |
for i in range(0, 26): | |
print("%d -\t%s" % (i, decipher(text, key=i))) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from collections import defaultdict | |
def get_letters_statistics(text): | |
freq_dict = defaultdict(int) | |
res_dict = dict() | |
all_letters_count = 0 | |
for char in text: | |
if char.isalpha(): | |
all_letters_count += 1 | |
freq_dict[char.lower()] += 1 | |
for key, value in freq_dict.items(): | |
res_dict[key] = value * 100 / all_letters_count | |
return res_dict | |
def test_letters_statistics(): | |
s = "asdgshdkjgasdkghasdkgasd" | |
with open('war_and_peace.txt', 'r') as war_and_peace: | |
s = war_and_peace.read().replace('\n', '') | |
stat_dict = get_letters_statistics(s) | |
for key, value in sorted(stat_dict.items(), | |
key=lambda k_v: k_v[1], reverse=True): | |
print("Letter '%s' - %.2f%%" % (str(key), value)) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment