Skip to content

Instantly share code, notes, and snippets.

@yangkun
Created July 14, 2015 18:28
Show Gist options
  • Save yangkun/fdf9b25f9c1a331947eb to your computer and use it in GitHub Desktop.
Save yangkun/fdf9b25f9c1a331947eb to your computer and use it in GitHub Desktop.
[sql] get distance lat-lng
CREATE OR REPLACE FUNCTION calc_distance(
pLat1 NUMBER,
pLon1 NUMBER,
pLat2 NUMBER,
pLon2 NUMBER)
RETURN NUMBER
IS
-- r is the spherical radius of earth in Kilometers
cSpherRad CONSTANT NUMBER := 6367;
-- The spherical radius of earth in miles is 3956
a NUMBER;
vLat NUMBER;
vLat1Rad NUMBER;
vLat2Rad NUMBER;
vLon NUMBER;
vLon1Rad NUMBER;
vLon2Rad NUMBER;
BEGIN
/*
Most computers require the arguments of trigonometric functions to be
expressed in radians. To convert lon1, lat1 and lon2,lat2 from
degrees,minutes, seconds to radians, first convert them to decimal
degrees. To convert decimal degrees to radians, multiply the number
of degrees by pi/180 = 0.017453293 radians/degrees.
*/
vLat1Rad := pLat1 * 0.017453293;
vLat2Rad := pLat2 * 0.017453293;
vLon1Rad := pLon1 * 0.017453293;
vLon2Rad := pLon2 * 0.017453293;
vLon := vLon2Rad - vLon1Rad;
vLat := vLat2Rad - vLat1Rad;
a := POWER(SIN(vLat/2),2) + COS(vLat1Rad) * COS(vLat2Rad) * POWER(SIN(vLon/2),2);
/*
The intermediate result c is the great circle distance in radians.
Inverse trigonometric functions return results expressed in radians.
To express c in decimal degrees, multiply the number of radians by
180/pi = 57.295780 degrees/radian.
The great circle distance d will be in the same units as r.
*/
RETURN ROUND(cSpherRad * 2 * ATAN2(SQRT(a), SQRT(1-a)),1);
EXCEPTION
WHEN OTHERS THEN
RETURN 999;
END;
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment