Skip to content

Instantly share code, notes, and snippets.

@yangyushi
Last active October 16, 2025 10:21
Show Gist options
  • Save yangyushi/ce9c9b86e21abcbeaa4bdf7feb6a51fd to your computer and use it in GitHub Desktop.
Save yangyushi/ce9c9b86e21abcbeaa4bdf7feb6a51fd to your computer and use it in GitHub Desktop.

测序/生信分析

我们专注短读长测序平台的碱基识别(Basecall)任务。任务的关键特征是:

  • 输入数据:$\mathbf{X} \in \mathcal{R}^{(T \times N \times C)}$,其中

    • $T$: 表示测序循环数目,范围在 $50 \sim 1000$
    • $N$: 表示 DNA 分子数目,范围在 $10^7 \sim 10^{11}$
    • $D$: 表示输入信号的维度,范围在 $2 \sim 10^2$
  • 输出数据:$\mathbf{Y} \in \{a, t, c, g\}^{(N \times T)}$,即 N 条长度为 T 的基因序列

注意:我们感兴趣的短读长 Basecall 技术趋于成熟,相关的文章少。近期搜索 Basecall 关键字,大部分结果是长度长(三代、纳米孔)测序平台的任务。它们和我们关系不大,不过可以学习和参考。

论文

课程

书籍

标准

机器学习

我们关心模型的训练、加速以及有意思的理论文章。

论文

  • Scaling Laws for Neural Language Models
  • Language Models are Few-Shot Learners
  • Attention is all you need
  • On the Efficiency of Convolutional Neural Networks
  • White-Box Transformers via Sparse Rate Reduction: Compression Is All There Is?
  • Efficient LLM Inference on CPUs
  • How to avoid machine learning pitfalls: a guide for academic researchers
  • Mamba: Linear-Time Sequence Modeling with Selective State Spaces
  • GPTQ: Accurate Post-Training Quantization for Generative Pre-trained Transformers
  • Efficiently Modeling Long Sequences with Structured State Spaces
  • Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity
  • FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness
  • LoRA: Low-Rank Adaptation of Large Language Models
  • Zoom In: An Introduction to Circuits
  • The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks
  • A high-bias, low-variance introduction to Machine Learning for physicists
  • BranchyNet: Fast Inference via Early Exiting from Deep Neural Networks
  • A Gentle Tutorial of Recurrent Neural Network with Error Backpropagation
  • Masked Autoencoders As Spatiotemporal Learners
  • An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale
  • You only look once: Unified, real-time object detection
  • Deep Residual Learning for Image Recognition

书籍

  • Hands-on machine learning with scikit-learn, keras, and TensorFlow: Concepts, tools, and techniques to build intelligent systems:神经网络入门

博客

YouTube

  1. Andrej Karpathy - a blend of general and technical content, Zero to Hero playlist is a must-watch youtube.com/andrejkarpathy @karpathy
  2. Umar Jamil - highly technical, implements ML and LLM techniques from scratch youtube.com/@umarjamilai @hkproj
  3. Simon Oz - technical low-level machine learning videos youtube.com/@szymonozog7862
  4. Tunadorable - paper review, implementation, triton youtube.com/@Tunadorable
  5. GPU Mode - technical interviews and walkthroughs about anything related to GPUs youtube.com/@GPUMODE
  6. AI Jason - AI experiments, software design, and new techniques beautifully explained youtube.com/@AIJasonZ @jasonzhou1993
  7. Ferdinand Mom - everything related to distributed training & inference youtube.com/@FerdinandMom @FerdinandMom
  8. Welch Labs - unique in-depth look at machine learning complexities like nobody else youtube.com/@WelchLabsVideo @welchlabs
  9. Artem Kirsanov - neuroscience and machine learning from a different look, great visuals youtube.com/@ArtemKirsanov @ArtemKRSV
  10. David Ondrej - new models, building apps with AI, practical for developers youtube.com/@DavidOndrej @DavidOndrej1

代码

我们使用 Python/C++ 编码,通过 Git 进行版本管理与多人合作。

书籍

  • Programming Massively Parallel Processors: A Hands-on Approach, Fourth Edition:著名 CUDA 入门教材 PMPP
  • C++ Concurrency in Action
  • GPU编程实战(基于Python和CUDA)
  • Python 和 HDF5 大数据应用

课程


不用担心,大部分我也没看过

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment