Created
February 25, 2017 05:25
-
-
Save yannisxu/3cb1a7aec466182355c770b5cec15712 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# -*- coding: utf-8 -*- | |
# @Author: xuyannis | |
# @Date: 2017-02-25 12:35:15 | |
# @Last Modified by: xuyannis | |
# @Last Modified time: 2017-02-25 13:22:54 | |
import numpy as np | |
from numpy import linalg as la | |
import pandas as pd | |
def cosineSimilarity (vec1, vec2): | |
inA = np.mat(vec1) | |
inB = np.mat(vec2) | |
num = float(inA * inB.T) #若为行向量: A * B.T | |
donom = la.norm(inA) * la.norm(inB) ##余弦值 | |
return 0.5+ 0.5*(num / donom) # 归一化 | |
def pearsonSimilar(inA,inB): | |
if len(inA)<3: | |
return 1.0 | |
return 0.5+0.5*np.corrcoef(inA,inB,rowvar=0)[0][1] | |
df = pd.read_csv('30.csv') | |
vec_pv = df.pv | |
vec_pv_real = df.pv_real | |
vec_cost = df.cost | |
vec_pv_ad = df.pv_ad | |
print "PV与无爬虫PV相似度" | |
print pearsonSimilar(vec_pv, vec_pv_real) | |
print "PV与消耗相似度" | |
print pearsonSimilar(vec_pv, vec_cost) | |
print "无爬虫PV与消耗相似度" | |
print pearsonSimilar(vec_pv_real, vec_cost) | |
print "PV与广告PV相似度" | |
print pearsonSimilar(vec_pv, vec_pv_ad) | |
print "无爬虫PV与广告PV相似度" | |
print pearsonSimilar(vec_pv_real, vec_pv_ad) | |
print "广告PV与广告消耗相似度" | |
print pearsonSimilar(vec_pv, vec_cost) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment