Last active
July 3, 2020 23:16
-
-
Save yaravind/3847afbd87d9f25ef9ae4ccf79b5f39d to your computer and use it in GitHub Desktop.
SparkML to MLLib conversion to run BisectingKMeans clustering
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import org.apache.spark.mllib.clustering.BisectingKMeans | |
import org.apache.spark.mllib.linalg.Vectors | |
import org.apache.spark.mllib.linalg.Vector | |
//std_features col is of type vector | |
scaledFeatures.select($"std_features").printSchema() | |
val tempFeatureRdd = scaledFeatures.select($"std_features").rdd | |
import scala.reflect.runtime.universe._ | |
def getType[T: TypeTag](value: T) = typeOf[T] | |
println("-------BEFORE") | |
println("Type of RDD: "+getType(tempFeatureRdd)) | |
println("Type of column: "+getType(tempFeatureRdd.first())) | |
/** | |
create a new df of type RDD[org.apache.spark.mllib.linalg.Vector] by mapping | |
RDD[org.apache.spark.sql.Row] to RDD[org.apache.spark.mllib.linalg.Vector] | |
as BisectingKMeans works only with Vector type | |
**/ | |
val input = scaledFeatures | |
.select($"std_features") | |
.rdd | |
.map(v => Vectors.fromML(v.getAs[org.apache.spark.ml.linalg.Vector](0))) | |
.cache() //important for ML algos to run faster | |
println("-------AFTER") | |
println("Type of RDD: "+getType(input)) | |
println("Type of column: "+getType(input.first())) | |
println("Total rows: "+input.count()) | |
// Clustering the data into 9 clusters by BisectingKMeans. | |
val bkm = new BisectingKMeans().setK(9) | |
val model = bkm.run(input) | |
println(s"Compute Cost: ${model.computeCost(input)}") | |
model.clusterCenters.zipWithIndex.foreach { case (center, idx) => | |
println(s"Cluster Center ${idx}: ${center}") | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment