Created
December 16, 2016 06:03
-
-
Save yaroslavvb/ef407a599f0f549f62d91c3a00dcfb6c to your computer and use it in GitHub Desktop.
Example of using shared counters to implement Barrier primitive
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
"""Example of barrier implementation using TensorFlow shared variables. | |
All workers synchronize on barrier, copy global parameters to local versions | |
and increment global parameter variable asynchronously. Should see something | |
like this: | |
bash> killall python | |
bash> python simple_barrier.py --num_workers=4 | |
worker 0, local_param 4 global_param 5 | |
worker 2, local_param 4 global_param 7 | |
worker 1, local_param 4 global_param 7 | |
worker 3, local_param 4 global_param 8 | |
worker 3, local_param 8 global_param 10 | |
worker 2, local_param 8 global_param 11 | |
""" | |
import numpy as np | |
import subprocess | |
import sys | |
import tensorflow as tf | |
import threading | |
import time | |
flags = tf.flags | |
flags.DEFINE_integer("iters", 10, "Maximum number of steps") | |
flags.DEFINE_integer("starting_port", "12222", "port of first worker") | |
flags.DEFINE_integer("num_workers", 4, "number of workers") | |
flags.DEFINE_integer("task", -1, "internal use") | |
flags.DEFINE_float("sleep_interval", 0.1, "how long to sleep in wait loop") | |
FLAGS = flags.FLAGS | |
# setup local cluster from flags | |
host = "127.0.0.1:" | |
s = FLAGS.starting_port | |
N = FLAGS.num_workers | |
cluster = {"worker": [host+str(port) for port in range(s, s+N)]} | |
clusterspec = tf.train.ClusterSpec(cluster).as_cluster_def() | |
# global ops | |
init_op = None | |
train_ops = [] # worker local train ops, read local params, update global | |
counter_vars = [] # counters for barrier | |
counter_adder_ops = [] | |
global_param_var = None | |
local_param_vars = [] | |
local_param_sync_ops = [] | |
def default_config(): | |
optimizer_options = tf.OptimizerOptions(opt_level=tf.OptimizerOptions.L0) | |
config = tf.ConfigProto( | |
graph_options=tf.GraphOptions(optimizer_options=optimizer_options)) | |
config.log_device_placement = False | |
config.allow_soft_placement = False | |
return config | |
def create_graph(devices): | |
"""Create graph that keeps global params + counters on devices[0] and | |
local params/train ops on devices[:]""" | |
global train_ops, counter_vars, counter_adder_ops, global_param_var, local_param_vars, local_param_sync_ops | |
dtype=tf.int32 | |
with tf.device(devices[0]): | |
global_param_var = tf.get_variable("param", shape=(), dtype=dtype, | |
initializer=tf.zeros_initializer) | |
for i in range(2): | |
counter_var = tf.get_variable("counter-"+str(i), (), tf.int32, | |
initializer=tf.zeros_initializer) | |
counter_vars.append(counter_var) | |
counter_adder_ops.append(counter_var.assign_add(1, use_locking=True)) | |
# create local version of parameters | |
for (i, device) in enumerate(devices): | |
with tf.device(device): | |
local_param_var = tf.get_variable("local_param-"+str(i), (), dtype, | |
initializer=tf.zeros_initializer) | |
local_param_vars.append(local_param_var) | |
local_param_sync_op = local_param_var.assign(global_param_var) | |
local_param_sync_ops.append(local_param_sync_op) | |
train_op = global_param_var.assign_add(1) | |
train_ops.append(train_op) | |
init_op = tf.initialize_all_variables() | |
return (init_op, train_ops) | |
def create_worker_threads(sess): | |
"""Creates a thread for each op in ops, running it iters times.""" | |
def barrier(): | |
sess.run(counter_adder_ops[0]) | |
while sess.run(counter_vars[0]) % N != 0: | |
time.sleep(FLAGS.sleep_interval) | |
sess.run(counter_adder_ops[1]) | |
while sess.run(counter_vars[1]) % N != 0: | |
time.sleep(FLAGS.sleep_interval) | |
def create_run_method(worker_id): | |
def _run(): | |
local_param_var = local_param_vars[worker_id] | |
sync_op = local_param_sync_ops[worker_id] | |
train_op = train_ops[worker_id] | |
for i in range(FLAGS.iters): | |
barrier() | |
sess.run(sync_op) | |
barrier() | |
old_val, updated_val = sess.run([local_param_var, train_op]) | |
print("worker %2d, local_param %2d global_param %2d" %(worker_id, | |
old_val, | |
updated_val)) | |
return _run | |
return [threading.Thread(target=create_run_method(i)) | |
for i in range(N)] | |
def wait_for_threads_to_finish(threads): | |
while any(t.is_alive() for t in threads): | |
time.sleep(FLAGS.sleep_interval) | |
def launch_workers(): | |
"""Launch processes running TensorFlow servers.""" | |
def runcmd(cmd): subprocess.Popen(cmd, shell=True, stderr=subprocess.STDOUT) | |
for i in range(N): | |
cmd = "python simple_barrier.py --task="+str(i) | |
print("Executing "+cmd) | |
runcmd(cmd) | |
def run_worker(task=-1): | |
print("Worker %d entering server loop" %(task)) | |
server = tf.train.Server(clusterspec, config=default_config(), | |
job_name="worker", | |
task_index=FLAGS.task) | |
server.join() | |
def run_client(): | |
tasks = ["/job:worker/task:%d"%(i) for i in range(FLAGS.num_workers)] | |
(init_op, add_ops) = create_graph(tasks) | |
# launch distributed service | |
print("launching workers") | |
launch_workers() | |
# reset containers of first worker (it stores shared state) | |
worker_ip = host+str(FLAGS.starting_port) | |
# need tf.Session.reset if there are worker servers launched from before | |
# However, tf.Session.reset can hang if workers are in process of being | |
# brought up, hence more robust to do killall python | |
# tf.Session.reset("grpc://" + worker_ip) | |
print("Creating session") | |
sess = tf.Session("grpc://"+ worker_ip, | |
config=default_config()) | |
sess.run(init_op) | |
worker_threads = create_worker_threads(sess) | |
[t.start() for t in worker_threads] | |
wait_for_threads_to_finish(worker_threads) | |
if __name__=='__main__': | |
if FLAGS.task == -1: | |
# client launches worker processes and issues .run calls | |
run_client() | |
else: | |
run_worker(FLAGS.task) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
same confusion