Last active
November 1, 2017 08:20
-
-
Save yaroslavvb2/215fe7a5aa4163416ebb00984c61dbb3 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import tensorflow as tf | |
from tensorflow.contrib.eager.python import tfe | |
tfe.enable_eager_execution() | |
context = tf.device('/gpu:0') | |
context.__enter__() | |
# download resnet_model | |
import sys, os, urllib.request | |
resnet_model_url="https://raw.githubusercontent.com/tensorflow/models/master/official/resnet/resnet_model.py" | |
response = urllib.request.urlopen(resnet_model_url) | |
open("resnet_model.py", "wb").write(response.read()) | |
sys.path.insert(0, ".") | |
import resnet_model | |
HEIGHT = 32 | |
WIDTH = 32 | |
DEPTH = 3 | |
NUM_CLASSES = 10 | |
BATCH_SIZE=128 | |
_WEIGHT_DECAY = 2e-4 | |
_INITIAL_LEARNING_RATE = 0.1 * BATCH_SIZE / 128 | |
_MOMENTUM = 0.9 | |
RESNET_SIZE=32 | |
from tensorflow.python.eager import graph_callable | |
images = tf.zeros((BATCH_SIZE, HEIGHT, WIDTH, DEPTH)) | |
l = tf.cast(tf.random_uniform([BATCH_SIZE], maxval=NUM_CLASSES), tf.int32) | |
labels = tf.one_hot(l, NUM_CLASSES) | |
@graph_callable.graph_callable([]) | |
def resnet_loss(): | |
"""Resnet loss from random input""" | |
network = resnet_model.cifar10_resnet_v2_generator(RESNET_SIZE, NUM_CLASSES) | |
inputs = tf.reshape(images, [BATCH_SIZE, HEIGHT, WIDTH, DEPTH]) | |
logits = network(inputs,True) | |
cross_entropy = tf.losses.softmax_cross_entropy(logits=logits, | |
onehot_labels=labels) | |
return cross_entropy | |
loss_and_grads_fn = tfe.implicit_value_and_gradients(resnet_loss) | |
optimizer = tf.train.AdamOptimizer(learning_rate=0.01) | |
losses = [] | |
for i in range(500): | |
loss, grads_and_vars = loss_and_grads_fn() | |
optimizer.apply_gradients(grads_and_vars) | |
print(loss) | |
losses.append(loss.numpy()) | |
print(losses) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment