Created
March 5, 2022 03:17
-
-
Save yashprakash13/c26b9434cb6f368502a1a94edd6b1ca1 to your computer and use it in GitHub Desktop.
## Wandb Keras tutorial
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import argparse | |
import os | |
from train import train_cnn | |
# let's define some default hyperparameter values | |
PROJECT_NAME = "fashion_mnist" | |
BATCH_SIZE = 32 | |
DROPOUT = 0.2 | |
EPOCHS = 20 | |
L1_SIZE = 16 | |
L2_SIZE = 32 | |
HIDDEN_LAYER_SIZE = 128 | |
LEARNING_RATE = 0.01 | |
# parse all args and call the model | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"-p", | |
"--project_name", | |
type=str, | |
default=PROJECT_NAME, | |
help="Main project name") | |
parser.add_argument( | |
"-b", | |
"--batch_size", | |
type=int, | |
default=BATCH_SIZE, | |
help="batch_size") | |
parser.add_argument( | |
"--dropout_mask", | |
type=float, | |
default=DROPOUT, | |
help="dropout before dense layers") | |
parser.add_argument( | |
"-e", | |
"--epochs", | |
type=int, | |
default=EPOCHS, | |
help="number of training epochs (passes through full training data)") | |
parser.add_argument( | |
"--hidden_size", | |
type=int, | |
default=HIDDEN_LAYER_SIZE, | |
help="hidden layer size") | |
parser.add_argument( | |
"-l1", | |
"--L1_conv_size", | |
type=int, | |
default=L1_SIZE, | |
help="layer 1 size") | |
parser.add_argument( | |
"-l2", | |
"--L2_conv_size", | |
type=int, | |
default=L2_SIZE, | |
help="layer 2 size") | |
parser.add_argument( | |
"-lr", | |
"--learning_rate", | |
type=float, | |
default=LEARNING_RATE, | |
help="learning rate") | |
parser.add_argument( | |
"-q", | |
"--dry_run", | |
action="store_true", | |
help="Dry run (do not log to wandb)") | |
args = parser.parse_args() | |
# easier testing--don't log to wandb if dry run is set | |
if args.dry_run: | |
os.environ['WANDB_MODE'] = 'dryrun' | |
train_cnn(args) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment