Last active
March 5, 2022 15:09
-
-
Save yashprakash13/efa9b90d4f9077ffab5252bb31733eac to your computer and use it in GitHub Desktop.
Weights & Biases Keras Fundamentals Tutorial
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" | |
Defines a simple CNN model on the fashion mnist dataset. | |
""" | |
from keras.preprocessing.image import ImageDataGenerator | |
from keras.datasets import fashion_mnist | |
from tensorflow.keras.models import Sequential | |
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dropout, Dense, Flatten | |
from tensorflow.keras.optimizers import Adam | |
from keras.utils import np_utils | |
import wandb | |
from wandb.keras import WandbCallback | |
# define the image width and height acc to the dataset | |
img_width=28 | |
img_height=28 | |
def train_cnn(args): | |
# initialize wandb logging for the project | |
wandb.init(project=args.project_name) | |
# log all experimental args to wandb | |
wandb.config.update(args) | |
# load and prepare data | |
(X_train, y_train), (X_test, y_test) = fashion_mnist.load_data() | |
labels=["T-shirt/top","Trouser","Pullover","Dress","Coat", "Sandal","Shirt","Sneaker","Bag","Ankle boot"] | |
# normalize the data | |
X_train = X_train.astype('float32') | |
X_train /= 255. | |
X_test = X_test.astype('float32') | |
X_test /= 255. | |
# reshape input data | |
X_train = X_train.reshape(X_train.shape[0], img_width, img_height, 1) | |
X_test = X_test.reshape(X_test.shape[0], img_width, img_height, 1) | |
# one hot encode outputs | |
y_train = np_utils.to_categorical(y_train) | |
y_test = np_utils.to_categorical(y_test) | |
num_classes = y_test.shape[1] # = 10, as there are 10 classes in fashion mnist dataset | |
# build model | |
model = Sequential() | |
model.add(Conv2D(args.L1_conv_size, (5, 5), activation='relu', input_shape=(img_width, img_height,1))) | |
model.add(MaxPooling2D(pool_size=(2, 2))) | |
model.add(Conv2D(args.L2_conv_size, (5, 5), activation='relu')) | |
model.add(MaxPooling2D(pool_size=(2, 2))) | |
model.add(Dropout(args.dropout_mask)) | |
model.add(Flatten()) | |
model.add(Dense(args.hidden_size, activation='relu')) | |
model.add(Dense(num_classes, activation='softmax')) | |
adam = Adam(lr=args.learning_rate) | |
# enable logging for validation examples | |
val_generator = ImageDataGenerator() | |
model.compile(loss='categorical_crossentropy', optimizer=adam, metrics=['accuracy']) | |
model.fit(X_train, y_train, | |
validation_data=(X_test, y_test), | |
epochs=args.epochs, | |
callbacks=[WandbCallback(data_type="image", | |
labels=labels, | |
generator=val_generator.flow(X_test, y_test, batch_size=32))]) | |
# save the trained model | |
model.save(f"{args.model_name}.h5") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment