-
-
Save yashugupta786/cd44ff9ca93f0057cdbd0ccce24e4c21 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
'''Crop an image to just the portions containing text. | |
Usage: | |
./crop_morphology.py path/to/image.jpg | |
This will place the cropped image in path/to/image.crop.png. | |
For details on the methodology, see | |
http://www.danvk.org/2015/01/07/finding-blocks-of-text-in-an-image-using-python-opencv-and-numpy.html | |
Script created by Dan Vanderkam (https://github.com/danvk) | |
Adapted to Python 3 by Lui Pillmann (https://github.com/luipillmann) | |
''' | |
import glob | |
import os | |
import random | |
import sys | |
import random | |
import math | |
import json | |
from collections import defaultdict | |
import cv2 | |
from PIL import Image, ImageDraw | |
import numpy as np | |
from scipy.ndimage.filters import rank_filter | |
def dilate(ary, N, iterations): | |
"""Dilate using an NxN '+' sign shape. ary is np.uint8.""" | |
kernel = np.zeros((N,N), dtype=np.uint8) | |
kernel[(N-1)//2,:] = 1 # Bug solved with // (integer division) | |
dilated_image = cv2.dilate(ary / 255, kernel, iterations=iterations) | |
kernel = np.zeros((N,N), dtype=np.uint8) | |
kernel[:,(N-1)//2] = 1 # Bug solved with // (integer division) | |
dilated_image = cv2.dilate(dilated_image, kernel, iterations=iterations) | |
return dilated_image | |
def props_for_contours(contours, ary): | |
"""Calculate bounding box & the number of set pixels for each contour.""" | |
c_info = [] | |
for c in contours: | |
x,y,w,h = cv2.boundingRect(c) | |
c_im = np.zeros(ary.shape) | |
cv2.drawContours(c_im, [c], 0, 255, -1) | |
c_info.append({ | |
'x1': x, | |
'y1': y, | |
'x2': x + w - 1, | |
'y2': y + h - 1, | |
'sum': np.sum(ary * (c_im > 0))/255 | |
}) | |
return c_info | |
def union_crops(crop1, crop2): | |
"""Union two (x1, y1, x2, y2) rects.""" | |
x11, y11, x21, y21 = crop1 | |
x12, y12, x22, y22 = crop2 | |
return min(x11, x12), min(y11, y12), max(x21, x22), max(y21, y22) | |
def intersect_crops(crop1, crop2): | |
x11, y11, x21, y21 = crop1 | |
x12, y12, x22, y22 = crop2 | |
return max(x11, x12), max(y11, y12), min(x21, x22), min(y21, y22) | |
def crop_area(crop): | |
x1, y1, x2, y2 = crop | |
return max(0, x2 - x1) * max(0, y2 - y1) | |
def find_border_components(contours, ary): | |
borders = [] | |
area = ary.shape[0] * ary.shape[1] | |
for i, c in enumerate(contours): | |
x,y,w,h = cv2.boundingRect(c) | |
if w * h > 0.5 * area: | |
borders.append((i, x, y, x + w - 1, y + h - 1)) | |
return borders | |
def angle_from_right(deg): | |
return min(deg % 90, 90 - (deg % 90)) | |
def remove_border(contour, ary): | |
"""Remove everything outside a border contour.""" | |
# Use a rotated rectangle (should be a good approximation of a border). | |
# If it's far from a right angle, it's probably two sides of a border and | |
# we should use the bounding box instead. | |
c_im = np.zeros(ary.shape) | |
r = cv2.minAreaRect(contour) | |
degs = r[2] | |
if angle_from_right(degs) <= 10.0: | |
box = cv2.boxPoints(r) | |
box = np.int0(box) | |
cv2.drawContours(c_im, [box], 0, 255, -1) | |
cv2.drawContours(c_im, [box], 0, 0, 4) | |
else: | |
x1, y1, x2, y2 = cv2.boundingRect(contour) | |
cv2.rectangle(c_im, (x1, y1), (x2, y2), 255, -1) | |
cv2.rectangle(c_im, (x1, y1), (x2, y2), 0, 4) | |
return np.minimum(c_im, ary) | |
def find_components(edges, max_components=16): | |
"""Dilate the image until there are just a few connected components. | |
Returns contours for these components.""" | |
# Perform increasingly aggressive dilation until there are just a few | |
# connected components. | |
count = 21 | |
dilation = 5 | |
n = 1 | |
while count > 16: | |
n += 1 | |
dilated_image = dilate(edges, N=3, iterations=n) | |
dilated_image = np.uint8(dilated_image) | |
_, contours, hierarchy = cv2.findContours(dilated_image, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) | |
count = len(contours) | |
#print dilation | |
#Image.fromarray(edges).show() | |
#Image.fromarray(255 * dilated_image).show() | |
return contours | |
def find_optimal_components_subset(contours, edges): | |
"""Find a crop which strikes a good balance of coverage/compactness. | |
Returns an (x1, y1, x2, y2) tuple. | |
""" | |
c_info = props_for_contours(contours, edges) | |
c_info.sort(key=lambda x: -x['sum']) | |
total = np.sum(edges) / 255 | |
area = edges.shape[0] * edges.shape[1] | |
c = c_info[0] | |
del c_info[0] | |
this_crop = c['x1'], c['y1'], c['x2'], c['y2'] | |
crop = this_crop | |
covered_sum = c['sum'] | |
while covered_sum < total: | |
changed = False | |
recall = 1.0 * covered_sum / total | |
prec = 1 - 1.0 * crop_area(crop) / area | |
f1 = 2 * (prec * recall / (prec + recall)) | |
#print '----' | |
for i, c in enumerate(c_info): | |
this_crop = c['x1'], c['y1'], c['x2'], c['y2'] | |
new_crop = union_crops(crop, this_crop) | |
new_sum = covered_sum + c['sum'] | |
new_recall = 1.0 * new_sum / total | |
new_prec = 1 - 1.0 * crop_area(new_crop) / area | |
new_f1 = 2 * new_prec * new_recall / (new_prec + new_recall) | |
# Add this crop if it improves f1 score, | |
# _or_ it adds 25% of the remaining pixels for <15% crop expansion. | |
# ^^^ very ad-hoc! make this smoother | |
remaining_frac = c['sum'] / (total - covered_sum) | |
new_area_frac = 1.0 * crop_area(new_crop) / crop_area(crop) - 1 | |
if new_f1 > f1 or ( | |
remaining_frac > 0.25 and new_area_frac < 0.15): | |
print('%d %s -> %s / %s (%s), %s -> %s / %s (%s), %s -> %s' % ( | |
i, covered_sum, new_sum, total, remaining_frac, | |
crop_area(crop), crop_area(new_crop), area, new_area_frac, | |
f1, new_f1)) | |
crop = new_crop | |
covered_sum = new_sum | |
del c_info[i] | |
changed = True | |
break | |
if not changed: | |
break | |
return crop | |
def pad_crop(crop, contours, edges, border_contour, pad_px=15): | |
"""Slightly expand the crop to get full contours. | |
This will expand to include any contours it currently intersects, but will | |
not expand past a border. | |
""" | |
bx1, by1, bx2, by2 = 0, 0, edges.shape[0], edges.shape[1] | |
if border_contour is not None and len(border_contour) > 0: | |
c = props_for_contours([border_contour], edges)[0] | |
bx1, by1, bx2, by2 = c['x1'] + 5, c['y1'] + 5, c['x2'] - 5, c['y2'] - 5 | |
def crop_in_border(crop): | |
x1, y1, x2, y2 = crop | |
x1 = max(x1 - pad_px, bx1) | |
y1 = max(y1 - pad_px, by1) | |
x2 = min(x2 + pad_px, bx2) | |
y2 = min(y2 + pad_px, by2) | |
return crop | |
crop = crop_in_border(crop) | |
c_info = props_for_contours(contours, edges) | |
changed = False | |
for c in c_info: | |
this_crop = c['x1'], c['y1'], c['x2'], c['y2'] | |
this_area = crop_area(this_crop) | |
int_area = crop_area(intersect_crops(crop, this_crop)) | |
new_crop = crop_in_border(union_crops(crop, this_crop)) | |
if 0 < int_area < this_area and crop != new_crop: | |
print('%s -> %s' % (str(crop), str(new_crop))) | |
changed = True | |
crop = new_crop | |
if changed: | |
return pad_crop(crop, contours, edges, border_contour, pad_px) | |
else: | |
return crop | |
def downscale_image(im, max_dim=2048): | |
"""Shrink im until its longest dimension is <= max_dim. | |
Returns new_image, scale (where scale <= 1). | |
""" | |
a, b = im.size | |
if max(a, b) <= max_dim: | |
return 1.0, im | |
scale = 1.0 * max_dim / max(a, b) | |
new_im = im.resize((int(a * scale), int(b * scale)), Image.ANTIALIAS) | |
return scale, new_im | |
def process_image(path, out_path): | |
orig_im = Image.open(path) | |
scale, im = downscale_image(orig_im) | |
edges = cv2.Canny(np.asarray(im), 100, 200) | |
# TODO: dilate image _before_ finding a border. This is crazy sensitive! | |
_, contours, hierarchy = cv2.findContours(edges, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) | |
borders = find_border_components(contours, edges) | |
borders.sort(key=lambda i_x1_y1_x2_y2: (i_x1_y1_x2_y2[3] - i_x1_y1_x2_y2[1]) * (i_x1_y1_x2_y2[4] - i_x1_y1_x2_y2[2])) | |
border_contour = None | |
if len(borders): | |
border_contour = contours[borders[0][0]] | |
edges = remove_border(border_contour, edges) | |
edges = 255 * (edges > 0).astype(np.uint8) | |
# Remove ~1px borders using a rank filter. | |
maxed_rows = rank_filter(edges, -4, size=(1, 20)) | |
maxed_cols = rank_filter(edges, -4, size=(20, 1)) | |
debordered = np.minimum(np.minimum(edges, maxed_rows), maxed_cols) | |
edges = debordered | |
contours = find_components(edges) | |
if len(contours) == 0: | |
print('%s -> (no text!)' % path) | |
return | |
crop = find_optimal_components_subset(contours, edges) | |
crop = pad_crop(crop, contours, edges, border_contour) | |
crop = [int(x / scale) for x in crop] # upscale to the original image size. | |
#draw = ImageDraw.Draw(im) | |
#c_info = props_for_contours(contours, edges) | |
#for c in c_info: | |
# this_crop = c['x1'], c['y1'], c['x2'], c['y2'] | |
# draw.rectangle(this_crop, outline='blue') | |
#draw.rectangle(crop, outline='red') | |
#im.save(out_path) | |
#draw.text((50, 50), path, fill='red') | |
#orig_im.save(out_path) | |
#im.show() | |
text_im = orig_im.crop(crop) | |
text_im.save(out_path) | |
print('%s -> %s' % (path, out_path)) | |
if __name__ == '__main__': | |
if len(sys.argv) == 2 and '*' in sys.argv[1]: | |
files = glob.glob(sys.argv[1]) | |
random.shuffle(files) | |
else: | |
files = sys.argv[1:] | |
for path in files: | |
out_path = path.replace('.jpg', '.crop.png') | |
#out_path = path.replace('.png', '.crop.png') # .png as input | |
if os.path.exists(out_path): continue | |
try: | |
process_image(path, out_path) | |
except Exception as e: | |
print('%s %s' % (path, e)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment