Last active
August 9, 2024 14:25
-
-
Save ycopin/3342888 to your computer and use it in GitHub Desktop.
Taylor diagram for python/matplotlib [ 10.5281/zenodo.5548061 ]
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
# Copyright: This document has been placed in the public domain. | |
""" | |
Taylor diagram (Taylor, 2001) implementation. | |
Note: If you have found these software useful for your research, I would | |
appreciate an acknowledgment. | |
""" | |
__version__ = "Time-stamp: <2018-12-06 11:43:41 ycopin>" | |
__author__ = "Yannick Copin <[email protected]>" | |
import numpy as NP | |
import matplotlib.pyplot as PLT | |
class TaylorDiagram(object): | |
""" | |
Taylor diagram. | |
Plot model standard deviation and correlation to reference (data) | |
sample in a single-quadrant polar plot, with r=stddev and | |
theta=arccos(correlation). | |
""" | |
def __init__(self, refstd, | |
fig=None, rect=111, label='_', srange=(0, 1.5), extend=False): | |
""" | |
Set up Taylor diagram axes, i.e. single quadrant polar | |
plot, using `mpl_toolkits.axisartist.floating_axes`. | |
Parameters: | |
* refstd: reference standard deviation to be compared to | |
* fig: input Figure or None | |
* rect: subplot definition | |
* label: reference label | |
* srange: stddev axis extension, in units of *refstd* | |
* extend: extend diagram to negative correlations | |
""" | |
from matplotlib.projections import PolarAxes | |
import mpl_toolkits.axisartist.floating_axes as FA | |
import mpl_toolkits.axisartist.grid_finder as GF | |
self.refstd = refstd # Reference standard deviation | |
tr = PolarAxes.PolarTransform() | |
# Correlation labels | |
rlocs = NP.array([0, 0.2, 0.4, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99, 1]) | |
if extend: | |
# Diagram extended to negative correlations | |
self.tmax = NP.pi | |
rlocs = NP.concatenate((-rlocs[:0:-1], rlocs)) | |
else: | |
# Diagram limited to positive correlations | |
self.tmax = NP.pi/2 | |
tlocs = NP.arccos(rlocs) # Conversion to polar angles | |
gl1 = GF.FixedLocator(tlocs) # Positions | |
tf1 = GF.DictFormatter(dict(zip(tlocs, map(str, rlocs)))) | |
# Standard deviation axis extent (in units of reference stddev) | |
self.smin = srange[0] * self.refstd | |
self.smax = srange[1] * self.refstd | |
ghelper = FA.GridHelperCurveLinear( | |
tr, | |
extremes=(0, self.tmax, self.smin, self.smax), | |
grid_locator1=gl1, tick_formatter1=tf1) | |
if fig is None: | |
fig = PLT.figure() | |
ax = FA.FloatingSubplot(fig, rect, grid_helper=ghelper) | |
fig.add_subplot(ax) | |
# Adjust axes | |
ax.axis["top"].set_axis_direction("bottom") # "Angle axis" | |
ax.axis["top"].toggle(ticklabels=True, label=True) | |
ax.axis["top"].major_ticklabels.set_axis_direction("top") | |
ax.axis["top"].label.set_axis_direction("top") | |
ax.axis["top"].label.set_text("Correlation") | |
ax.axis["left"].set_axis_direction("bottom") # "X axis" | |
ax.axis["left"].label.set_text("Standard deviation") | |
ax.axis["right"].set_axis_direction("top") # "Y-axis" | |
ax.axis["right"].toggle(ticklabels=True) | |
ax.axis["right"].major_ticklabels.set_axis_direction( | |
"bottom" if extend else "left") | |
if self.smin: | |
ax.axis["bottom"].toggle(ticklabels=False, label=False) | |
else: | |
ax.axis["bottom"].set_visible(False) # Unused | |
self._ax = ax # Graphical axes | |
self.ax = ax.get_aux_axes(tr) # Polar coordinates | |
# Add reference point and stddev contour | |
l, = self.ax.plot([0], self.refstd, 'k*', | |
ls='', ms=10, label=label) | |
t = NP.linspace(0, self.tmax) | |
r = NP.zeros_like(t) + self.refstd | |
self.ax.plot(t, r, 'k--', label='_') | |
# Collect sample points for latter use (e.g. legend) | |
self.samplePoints = [l] | |
def add_sample(self, stddev, corrcoef, *args, **kwargs): | |
""" | |
Add sample (*stddev*, *corrcoeff*) to the Taylor | |
diagram. *args* and *kwargs* are directly propagated to the | |
`Figure.plot` command. | |
""" | |
l, = self.ax.plot(NP.arccos(corrcoef), stddev, | |
*args, **kwargs) # (theta, radius) | |
self.samplePoints.append(l) | |
return l | |
def add_grid(self, *args, **kwargs): | |
"""Add a grid.""" | |
self._ax.grid(*args, **kwargs) | |
def add_contours(self, levels=5, **kwargs): | |
""" | |
Add constant centered RMS difference contours, defined by *levels*. | |
""" | |
rs, ts = NP.meshgrid(NP.linspace(self.smin, self.smax), | |
NP.linspace(0, self.tmax)) | |
# Compute centered RMS difference | |
rms = NP.sqrt(self.refstd**2 + rs**2 - 2*self.refstd*rs*NP.cos(ts)) | |
contours = self.ax.contour(ts, rs, rms, levels, **kwargs) | |
return contours | |
def test1(): | |
"""Display a Taylor diagram in a separate axis.""" | |
# Reference dataset | |
x = NP.linspace(0, 4*NP.pi, 100) | |
data = NP.sin(x) | |
refstd = data.std(ddof=1) # Reference standard deviation | |
# Generate models | |
m1 = data + 0.2*NP.random.randn(len(x)) # Model 1 | |
m2 = 0.8*data + .1*NP.random.randn(len(x)) # Model 2 | |
m3 = NP.sin(x-NP.pi/10) # Model 3 | |
# Compute stddev and correlation coefficient of models | |
samples = NP.array([ [m.std(ddof=1), NP.corrcoef(data, m)[0, 1]] | |
for m in (m1, m2, m3)]) | |
fig = PLT.figure(figsize=(10, 4)) | |
ax1 = fig.add_subplot(1, 2, 1, xlabel='X', ylabel='Y') | |
# Taylor diagram | |
dia = TaylorDiagram(refstd, fig=fig, rect=122, label="Reference", | |
srange=(0.5, 1.5)) | |
colors = PLT.matplotlib.cm.jet(NP.linspace(0, 1, len(samples))) | |
ax1.plot(x, data, 'ko', label='Data') | |
for i, m in enumerate([m1, m2, m3]): | |
ax1.plot(x, m, c=colors[i], label='Model %d' % (i+1)) | |
ax1.legend(numpoints=1, prop=dict(size='small'), loc='best') | |
# Add the models to Taylor diagram | |
for i, (stddev, corrcoef) in enumerate(samples): | |
dia.add_sample(stddev, corrcoef, | |
marker='$%d$' % (i+1), ms=10, ls='', | |
mfc=colors[i], mec=colors[i], | |
label="Model %d" % (i+1)) | |
# Add grid | |
dia.add_grid() | |
# Add RMS contours, and label them | |
contours = dia.add_contours(colors='0.5') | |
PLT.clabel(contours, inline=1, fontsize=10, fmt='%.2f') | |
# Add a figure legend | |
fig.legend(dia.samplePoints, | |
[ p.get_label() for p in dia.samplePoints ], | |
numpoints=1, prop=dict(size='small'), loc='upper right') | |
return dia | |
def test2(): | |
""" | |
Climatology-oriented example (after iteration w/ Michael A. Rawlins). | |
""" | |
# Reference std | |
stdref = 48.491 | |
# Samples std,rho,name | |
samples = [[25.939, 0.385, "Model A"], | |
[29.593, 0.509, "Model B"], | |
[33.125, 0.585, "Model C"], | |
[29.593, 0.509, "Model D"], | |
[71.215, 0.473, "Model E"], | |
[27.062, 0.360, "Model F"], | |
[38.449, 0.342, "Model G"], | |
[35.807, 0.609, "Model H"], | |
[17.831, 0.360, "Model I"]] | |
fig = PLT.figure() | |
dia = TaylorDiagram(stdref, fig=fig, label='Reference', extend=True) | |
dia.samplePoints[0].set_color('r') # Mark reference point as a red star | |
# Add models to Taylor diagram | |
for i, (stddev, corrcoef, name) in enumerate(samples): | |
dia.add_sample(stddev, corrcoef, | |
marker='$%d$' % (i+1), ms=10, ls='', | |
mfc='k', mec='k', | |
label=name) | |
# Add RMS contours, and label them | |
contours = dia.add_contours(levels=5, colors='0.5') # 5 levels in grey | |
PLT.clabel(contours, inline=1, fontsize=10, fmt='%.0f') | |
dia.add_grid() # Add grid | |
dia._ax.axis[:].major_ticks.set_tick_out(True) # Put ticks outward | |
# Add a figure legend and title | |
fig.legend(dia.samplePoints, | |
[ p.get_label() for p in dia.samplePoints ], | |
numpoints=1, prop=dict(size='small'), loc='upper right') | |
fig.suptitle("Taylor diagram", size='x-large') # Figure title | |
return dia | |
if __name__ == '__main__': | |
dia = test1() | |
dia = test2() | |
PLT.show() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
__version__ = "Time-stamp: <2018-12-06 11:55:22 ycopin>" | |
__author__ = "Yannick Copin <[email protected]>" | |
""" | |
Example of use of TaylorDiagram. Illustration dataset courtesy of Michael | |
Rawlins. | |
Rawlins, M. A., R. S. Bradley, H. F. Diaz, 2012. Assessment of regional climate | |
model simulation estimates over the Northeast United States, Journal of | |
Geophysical Research (2012JGRD..11723112R). | |
""" | |
from taylorDiagram import TaylorDiagram | |
import numpy as NP | |
import matplotlib.pyplot as PLT | |
# Reference std | |
stdrefs = dict(winter=48.491, | |
spring=44.927, | |
summer=37.664, | |
autumn=41.589) | |
# Sample std,rho: Be sure to check order and that correct numbers are placed! | |
samples = dict(winter=[[17.831, 0.360, "CCSM CRCM"], | |
[27.062, 0.360, "CCSM MM5"], | |
[33.125, 0.585, "CCSM WRFG"], | |
[25.939, 0.385, "CGCM3 CRCM"], | |
[29.593, 0.509, "CGCM3 RCM3"], | |
[35.807, 0.609, "CGCM3 WRFG"], | |
[38.449, 0.342, "GFDL ECP2"], | |
[29.593, 0.509, "GFDL RCM3"], | |
[71.215, 0.473, "HADCM3 HRM3"]], | |
spring=[[32.174, -0.262, "CCSM CRCM"], | |
[24.042, -0.055, "CCSM MM5"], | |
[29.647, -0.040, "CCSM WRFG"], | |
[22.820, 0.222, "CGCM3 CRCM"], | |
[20.505, 0.445, "CGCM3 RCM3"], | |
[26.917, 0.332, "CGCM3 WRFG"], | |
[25.776, 0.366, "GFDL ECP2"], | |
[18.018, 0.452, "GFDL RCM3"], | |
[79.875, 0.447, "HADCM3 HRM3"]], | |
summer=[[35.863, 0.096, "CCSM CRCM"], | |
[43.771, 0.367, "CCSM MM5"], | |
[35.890, 0.267, "CCSM WRFG"], | |
[49.658, 0.134, "CGCM3 CRCM"], | |
[28.972, 0.027, "CGCM3 RCM3"], | |
[60.396, 0.191, "CGCM3 WRFG"], | |
[46.529, 0.258, "GFDL ECP2"], | |
[35.230, -0.014, "GFDL RCM3"], | |
[87.562, 0.503, "HADCM3 HRM3"]], | |
autumn=[[27.374, 0.150, "CCSM CRCM"], | |
[20.270, 0.451, "CCSM MM5"], | |
[21.070, 0.505, "CCSM WRFG"], | |
[25.666, 0.517, "CGCM3 CRCM"], | |
[35.073, 0.205, "CGCM3 RCM3"], | |
[25.666, 0.517, "CGCM3 WRFG"], | |
[23.409, 0.353, "GFDL ECP2"], | |
[29.367, 0.235, "GFDL RCM3"], | |
[70.065, 0.444, "HADCM3 HRM3"]]) | |
# Colormap (see http://www.scipy.org/Cookbook/Matplotlib/Show_colormaps) | |
colors = PLT.matplotlib.cm.Set1(NP.linspace(0,1,len(samples['winter']))) | |
# Here set placement of the points marking 95th and 99th significance | |
# levels. For more than 102 samples (degrees freedom > 100), critical | |
# correlation levels are 0.195 and 0.254 for 95th and 99th | |
# significance levels respectively. Set these by eyeball using the | |
# standard deviation x and y axis. | |
#x95 = [0.01, 0.68] # For Tair, this is for 95th level (r = 0.195) | |
#y95 = [0.0, 3.45] | |
#x99 = [0.01, 0.95] # For Tair, this is for 99th level (r = 0.254) | |
#y99 = [0.0, 3.45] | |
x95 = [0.05, 13.9] # For Prcp, this is for 95th level (r = 0.195) | |
y95 = [0.0, 71.0] | |
x99 = [0.05, 19.0] # For Prcp, this is for 99th level (r = 0.254) | |
y99 = [0.0, 70.0] | |
rects = dict(winter=221, | |
spring=222, | |
summer=223, | |
autumn=224) | |
fig = PLT.figure(figsize=(11,8)) | |
fig.suptitle("Precipitations", size='x-large') | |
for season in ['winter','spring','summer','autumn']: | |
dia = TaylorDiagram(stdrefs[season], fig=fig, rect=rects[season], | |
label='Reference') | |
dia.ax.plot(x95,y95,color='k') | |
dia.ax.plot(x99,y99,color='k') | |
# Add samples to Taylor diagram | |
for i,(stddev,corrcoef,name) in enumerate(samples[season]): | |
dia.add_sample(stddev, corrcoef, | |
marker='$%d$' % (i+1), ms=10, ls='', | |
#mfc='k', mec='k', # B&W | |
mfc=colors[i], mec=colors[i], # Colors | |
label=name) | |
# Add RMS contours, and label them | |
contours = dia.add_contours(levels=5, colors='0.5') # 5 levels | |
dia.ax.clabel(contours, inline=1, fontsize=10, fmt='%.1f') | |
# Tricky: ax is the polar ax (used for plots), _ax is the | |
# container (used for layout) | |
dia._ax.set_title(season.capitalize()) | |
# Add a figure legend and title. For loc option, place x,y tuple inside [ ]. | |
# Can also use special options here: | |
# http://matplotlib.sourceforge.net/users/legend_guide.html | |
fig.legend(dia.samplePoints, | |
[ p.get_label() for p in dia.samplePoints ], | |
numpoints=1, prop=dict(size='small'), loc='center') | |
fig.tight_layout() | |
PLT.savefig('test_taylor_4panel.png') | |
PLT.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
I have noticed that when I plot curves using
self._ax
instead ofself.ax
, I get different a different line width, making the figure seem inconsistent. Do you have any idea why usingself._ax
instead results in a different line width?