Last active
March 13, 2020 01:32
-
-
Save yearofthewhopper/77404a5ccab0ae29ccf81c9abf403a73 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#source https://github.com/matterport/Mask_RCNN/issues/1361 | |
#You can 'filter out' classes you don't need after you run the detection but it doesn't prune the weights though. So, I'm not sure it would speed things up. Hope it helps. | |
# COCO class names | |
class_names = ['BG', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', | |
'bus', 'train', 'truck', 'boat', 'traffic light', | |
'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', | |
'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', | |
'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', | |
'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', | |
'kite', 'baseball bat', 'baseball glove', 'skateboard', | |
'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup', | |
'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', | |
'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', | |
'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', | |
'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', | |
'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', | |
'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', | |
'teddy bear', 'hair drier', 'toothbrush'] | |
# Class Index | |
id_car = class_names.index('car') | |
id_truck = class_names.index('truck') | |
id_bus = class_names.index('bus') | |
# Read Image | |
image = cv2.imread(os.path.join(path_input)) # BGR | |
image = image[..., ::-1] # BGR --> RGB | |
# Run detection | |
r = model.detect([image], verbose=0)[0] | |
# Exclude other classes except car,bus, & truck | |
r['class_ids_new'], r['rois_new']= [],[] | |
r['masks_new'], r['scores_new']= [],[] | |
r['masks'] = np.transpose(r['masks'], (2, 1, 0)) | |
for idx in range(len(r['class_ids'])): | |
if r['class_ids'][idx] == id_car or r['class_ids'][idx] == id_truck or r['class_ids'][idx] == id_bus: | |
r['class_ids_new'].append(r['class_ids'][idx]) | |
r['rois_new'].append(r['rois'][idx]) | |
r['masks_new'].append(r['masks'][idx]) | |
r['scores_new'].append(r['scores'][idx]) | |
del(r['class_ids'], r['rois'], r['masks'], r['scores']) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
source