Last active
October 3, 2017 14:57
-
-
Save yhilpisch/64aeedbeb334c89aa05529a79881ceeb to your computer and use it in GitHub Desktop.
Gist with additional files from For Python Quants Bootcamp, May 2017, New York City
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
3 + 4 | |
3 * 4 | |
3 / 4 | |
type(3) | |
type(4) | |
3 ** 4 | |
sqrt(3) | |
3 ** 0.5 | |
import math | |
math.sqrt(3) | |
print("Python.") | |
a = 3 | |
b = 0.75 | |
c = 'Python.' | |
d = "He said:'I am late.'" | |
d | |
d = "He said:"I am late."" | |
d = 'He said:"I am late."' | |
d | |
a | |
print(a) | |
a | |
b | |
a * b | |
a ** b | |
d | |
2 * d | |
d + d | |
d + d * 2 | |
d / d | |
d / 2 | |
d | |
d[0] | |
d[1] | |
len(d) | |
d[20] | |
d[19] | |
d[-1] | |
d[-2] | |
d[-20] | |
d[-21] | |
d[2] | |
d[:2] | |
d[:2] + d[2:] | |
d[2:] | |
d[2:7] | |
d[2:7:2] | |
d[::2] | |
d[::-1] | |
range(10) | |
type(range(10)) | |
for i in range(10): | |
print('For Python Quants') | |
for i in range(10): | |
print(i) | |
for i in range(10): | |
print(i ** 2) | |
%magic | |
%lsmagic | |
%hist | |
%hist? | |
%history? | |
len? | |
for i in range(10): | |
print(d[i]) | |
for c in d: | |
print(c) | |
for _ in d: | |
print(_) | |
c | |
for _ in d: | |
print(_, end='') | |
for _ in d: | |
print(_, end='|') | |
for x in range(10): | |
print(x) | |
for x in range(10): | |
print(x ** 2) | |
l = [x for x in range(10)] | |
l | |
l = [x ** 2 for x in range(10)] | |
l | |
type(l) | |
l2 = [x ** 2 for x in range(10) if x > 2] | |
l2 | |
l2 = [x ** 2 for x in range(10) if (x > 2) and (x < 8)] | |
l2 | |
l[0] | |
l[:5] | |
l[5:] | |
l[::-1] | |
l = [x ** 2 for x in range(10)] | |
10 % 2 | |
11 % 2 | |
l = [x ** 2 for x in range(10) if x % 2 == 0] | |
l | |
l = [x for x in range(20) if x % 2 == 0] | |
l | |
for x in range(20): | |
for y in range(10, 50): | |
if x % 2 == 0: | |
# then do something | |
pass | |
def f(x): | |
return x ** 2 | |
f | |
f(10) | |
f(10.5) | |
l = [f(x) for x in range(20) if x % 2 == 0] | |
l | |
l3 = [5, 'fpq', a, l] | |
l3 | |
l3.append('this is new') | |
l3 | |
l3.append(f) | |
l3 | |
l3[-1](5) | |
l.append('new') | |
l | |
l3 | |
l | |
l3 | |
def is_prime(I): | |
for i in range(2, I): | |
if I % i == 0: | |
return False | |
return True | |
is_prime(8) | |
is_prime(10) | |
is_prime(11) | |
is_prime(13) | |
l = [is_prime(x) for x in range(2, 101)] | |
l | |
l = [is_prime(x) for x in range(2, 20)] | |
l | |
class MyClass(object): | |
pass | |
class my_class(object): | |
pass | |
int(Ture) | |
int(True) | |
int(False) | |
while True: | |
print('hi') | |
while 2: | |
print('hi') | |
2 == 2 | |
True == 2 | |
True == 1 | |
def is_prime_2(I): | |
for i in range(2, I ** 0.5): | |
if I % i == 0: | |
return False | |
return True | |
is_prime_2(10) | |
def is_prime_2(I): | |
for i in range(2, int(I ** 0.5)): | |
if I % i == 0: | |
return False | |
return True | |
int(2.3) | |
int(2.7) | |
def is_prime_2(I): | |
for i in range(2, int(I ** 0.5) + 1): | |
if I % i == 0: | |
return False | |
return True | |
is_prime_2(10) | |
is_prime_2(11) | |
%ed | |
p1 = int(1e8 + 1) | |
p2 = int(1e8 + 3) | |
p1 | |
p2 | |
is_prime(p1) | |
is_prime(p2) | |
p2 = 2** 17 − 1 | |
p2 = 2 ** 17 - 1 | |
p2 | |
p2 = 2 ** 31 - 1 | |
p2 | |
%time is_prime(p1) | |
%time is_prime(p2) | |
p2 = 2 ** 17 - 1 | |
%time is_prime(p2) | |
%time is_prime_2(p2) | |
%time is_prime_2(int(2**31 - 1)) | |
def is_prime_3(I): | |
if I % 2 == 0: | |
return False | |
for i in range(3, int(I ** 0.5) + 1, 2): | |
if I % i == 0: | |
return False | |
return True | |
%time is_prime_3(int(2**31 - 1)) | |
%ed is_prime_3 | |
%ed -p | |
from math import sqrt | |
sqrt(4) | |
ls | |
cd .. | |
ls | |
cd bc | |
!mkdir bc | |
cd bc/ | |
%hist -f bc_day_1_section_02 |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"<img src=\"http://hilpisch.com/tpq_logo.png\" width=\"350px\">" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"# For Python Quants Bootcamp" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"**Day 4**\n", | |
"\n", | |
"Yves Hilpisch\n", | |
"\n", | |
"The Python Quants GmbH" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
" conda install scikit-learn\n", | |
" pip install tensorflow" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Simple Classification" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"import numpy as np" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"i = np.array([0, 1, 1.5, 2, 2.5, 3, 4, 5.5, 6, 7])" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"o = np.array([0, 0, 0, 0, 1, 1, 0, 1, 1, 1])" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"### OLS Regression" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"reg = np.polyfit(i, o, deg=3)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"reg" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"pred = np.polyval(reg, i)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"pred" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"from pylab import plt\n", | |
"plt.style.use('seaborn')\n", | |
"%matplotlib inline" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"plt.plot(i, o, 'ro')\n", | |
"plt.plot(i, pred, 'm')" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"### Logistic Regression" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"from sklearn import linear_model" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"log_reg = linear_model.LogisticRegression()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"iT = i.reshape(1, -1).T" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"log_reg.fit(iT, o)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"pred = log_reg.predict(iT)\n", | |
"pred" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"prob = log_reg.predict_proba(iT)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"plt.figure(figsize=(10, 6))\n", | |
"plt.plot(i, o, 'ro', label='data')\n", | |
"plt.plot(i, pred, 'b', label='prediction')\n", | |
"plt.plot(i, prob, 'm--', label='probability')\n", | |
"plt.legend(loc=0);" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"### Deep Learning" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"import tensorflow as tf" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"tf.logging.set_verbosity(tf.logging.ERROR)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"fc = [tf.contrib.layers.real_valued_column('i', dimension=1)]" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"model = tf.contrib.learn.DNNClassifier(hidden_units=[50, 50],\n", | |
" feature_columns=fc)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"def get_data():\n", | |
" fc = ({'i': tf.constant(i)})\n", | |
" la = tf.constant(o, shape=(len(o), 1))\n", | |
" return fc, la" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"get_data()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"model.fit(input_fn=get_data, steps=50)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"pred = list(model.predict(input_fn=get_data))\n", | |
"pred" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"model.evaluate(input_fn=get_data, steps=1)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"plt.figure(figsize=(10, 6))\n", | |
"plt.plot(i, o, 'ro', label='data')\n", | |
"plt.plot(i, pred, 'b', label='prediction')\n", | |
"plt.legend(loc=0);" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Stock Market Prediction" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"### Preparing Data" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"import pandas as pd" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"from pandas_datareader import data as web" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"data = pd.DataFrame(web.DataReader('^GSPC', data_source='yahoo')['Adj Close'])" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"data.columns = ['prices']" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"data.info()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"data['returns'] = np.log(data / data.shift(1))" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"lags = 10" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"cols = []\n", | |
"for lag in range(1, lags+1):\n", | |
" col = 'ret_%s' % lag\n", | |
" data[col] = data['returns'].shift(lag)\n", | |
" cols.append(col)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"data.head()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"data.dropna(inplace=True)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"### Logistic Regression" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"lm = linear_model.LogisticRegression(C=1e6)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"cols" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"lm.fit(data[cols], np.sign(data['returns']))" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"data['log_pred'] = lm.predict(data[cols])" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"data.tail()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"data['log_strategy'] = data['returns'] * data['log_pred']" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"data[['returns', 'log_strategy']].cumsum().apply(np.exp).plot(figsize=(10, 6))" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## TensorFlow" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"fc = tf.contrib.layers.real_valued_column('returns', dimension=lags)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"mean = data['returns'].mean()\n", | |
"mean" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"std = data['returns'].std()\n", | |
"std" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"fcb = [tf.contrib.layers.bucketized_column(fc,\n", | |
" boundaries=[mean-std, mean, mean+std])]" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"model = tf.contrib.learn.DNNClassifier(hidden_units=[100, 100],\n", | |
" feature_columns=fcb)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"(data['returns'] > 0).astype(int).values" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"def get_data():\n", | |
" fc = {'returns': tf.constant(data[cols].values)}\n", | |
" la = tf.constant((data['returns'] > 0).astype(int).values,\n", | |
" shape=[len(data), 1])\n", | |
" return fc, la" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"get_data()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"model.fit(input_fn=get_data, steps=100)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"model.evaluate(input_fn=get_data, steps=1)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"list(model.predict(input_fn=get_data))[:10]" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"data['dnn_pred'] = np.where(np.array(list(model.predict(input_fn=get_data))) > 0,\n", | |
" 1, -1)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"data['dnn_strategy'] = data['dnn_pred'] * data['returns']" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"data[['returns', 'log_strategy', 'dnn_strategy']].cumsum(\n", | |
" ).apply(np.exp).plot(figsize=(10, 6));" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Plotly" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"import plotly" | |
] | |
}, | |
{ | |
"cell_type": "raw", | |
"metadata": {}, | |
"source": [ | |
"plotly.tools.set_credentials_file(username='yves', api_key='lr1c37zw81',\n", | |
" stream_ids=['xyz', 'abc'])" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Oanda" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"### First Steps " | |
] | |
}, | |
{ | |
"cell_type": "raw", | |
"metadata": {}, | |
"source": [ | |
"!pip install v20" | |
] | |
}, | |
{ | |
"cell_type": "raw", | |
"metadata": {}, | |
"source": [ | |
"# if oandapyV20\n", | |
"# import oandapyV20 as v20" | |
] | |
}, | |
{ | |
"cell_type": "raw", | |
"metadata": {}, | |
"source": [ | |
"!pip install pyyaml" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"from tpqoa import tpqoa" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"import pandas as pd\n", | |
"from pylab import plt\n", | |
"plt.style.use('seaborn')\n", | |
"import cufflinks\n", | |
"%matplotlib inline" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"oanda = tpqoa('../code/pyalgo.cfg')" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"# \"older\" version needed here\n", | |
"# http://hilpisch.com/v20.zip\n", | |
"# download to current working folder and unzip there\n", | |
"import v20" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"v20/__init__.py v20/order.py v20/response.py\r\n", | |
"v20/account.py v20/position.py v20/spec_properties.py\r\n", | |
"v20/base_entity.py v20/pricing.py v20/trade.py\r\n", | |
"v20/errors.py v20/primitives.py v20/transaction.py\r\n", | |
"v20/instrument.py v20/request.py v20/user.py\r\n", | |
"\r\n", | |
"v20/__pycache__:\r\n", | |
"__init__.cpython-36.pyc primitives.cpython-36.pyc\r\n", | |
"account.cpython-36.pyc request.cpython-36.pyc\r\n", | |
"base_entity.cpython-36.pyc response.cpython-36.pyc\r\n", | |
"errors.cpython-36.pyc spec_properties.cpython-36.pyc\r\n", | |
"instrument.cpython-36.pyc trade.cpython-36.pyc\r\n", | |
"order.cpython-36.pyc transaction.cpython-36.pyc\r\n", | |
"position.cpython-36.pyc user.cpython-36.pyc\r\n", | |
"pricing.cpython-36.pyc\r\n" | |
] | |
} | |
], | |
"source": [ | |
"ls v20/*" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"# v20?" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"# !cat tpqoa.py" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"data = oanda.get_history('SPX500_USD', '2017-5-9', '2017-5-10', 'S5', 'A')" | |
] | |
}, | |
{ | |
"cell_type": "raw", | |
"metadata": {}, | |
"source": [ | |
"oanda.get_history?" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"data.info()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"data['c'].plot(figsize=(10, 6))" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"oanda.get_instruments()[:5]" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"oanda.stream_data('EUR_USD', stop=10)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"# oanda.on_success??" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"class Streamer(tpqoa):\n", | |
" def __init__(self, conf_file):\n", | |
" tpqoa.__init__(self, conf_file)\n", | |
" self.data = pd.DataFrame()\n", | |
" self.instrument = 'USD_CAD'\n", | |
" self.units = 1000000\n", | |
" self.position = 0\n", | |
" def on_success(self, time, bid, ask):\n", | |
" print('BID %s | ASK %s' % (bid, ask))\n", | |
" self.data = self.data.append(\n", | |
" pd.DataFrame({'bid': bid, 'ask': ask},\n", | |
" index=[pd.Timestamp(time[:-7])]))\n", | |
" self.data['mid'] = (self.data['ask'] +\n", | |
" self.data['bid']) / 2\n", | |
" self.data['SMA1'] = self.data['mid'].rolling(5).mean()\n", | |
" self.data['SMA2'] = self.data['mid'].rolling(10).mean()\n", | |
" if len(self.data) >= 10:\n", | |
" if self.data['SMA1'].ix[-1] > self.data['SMA2'].ix[-1]:\n", | |
" if self.position == 0:\n", | |
" self.create_order(self.instrument, self.units)\n", | |
" self.position = 1\n", | |
" if self.data['SMA1'].ix[-1] < self.data['SMA2'].ix[-1]:\n", | |
" if self.position == 1:\n", | |
" self.create_order(self.instrument, -1 * self.units)\n", | |
" self.position = 0\n", | |
" # self.data.index = pd.DatetimeIndex(self.data.index)\n", | |
" print(75 * '=')\n", | |
" print(self.data.tail())\n", | |
" print(2 * '\\n')" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"s = Streamer('../code/pyalgo.cfg')" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"s.data.info()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"s.stream_data('USD_CAD')" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
" s.create_order(instrument='DE30_EUR',\n", | |
" units=-100)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"<img src=\"http://hilpisch.com/tpq_logo.png\" width=\"350px\">" | |
] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.6.1" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 2 | |
} |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# | |
# Tick Data Client | |
# with ZeroMQ | |
# | |
import zmq | |
import datetime | |
context = zmq.Context() | |
socket = context.socket(zmq.SUB) | |
socket.connect('tcp://127.0.0.1:5555') | |
socket.setsockopt_string(zmq.SUBSCRIBE, '') | |
while True: | |
msg = socket.recv_string() | |
t = datetime.datetime.now() | |
print(str(t) + ' | ' + msg) | |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# | |
# Tick Data Client | |
# with ZeroMQ | |
# | |
import zmq | |
import datetime | |
import plotly.plotly as ply | |
import plotly.tools as tls | |
from plotly.graph_objs import * | |
stream_ids = tls.get_credentials_file()['stream_ids'] | |
# socket | |
context = zmq.Context() | |
socket = context.socket(zmq.SUB) | |
socket.connect('tcp://127.0.0.1:5555') | |
socket.setsockopt_string(zmq.SUBSCRIBE, '') | |
# plotting | |
s = Stream(maxpoints=100, token=stream_ids[0]) | |
t = Scatter(x=[], y=[], name='tick data', mode='lines+markers', stream=s) | |
d = Data([t]) | |
l = Layout(title='Bootcamp Tick Data') | |
f = Figure(data=d, layout=l) | |
ply.plot(f, filename='fpq_bootcamp', auto_open=True) | |
st = ply.Stream(stream_ids[0]) | |
st.open() | |
while True: | |
msg = socket.recv_string() | |
t = datetime.datetime.now() | |
sym, value = msg.split() | |
print(str(t) + ' | ' + msg) | |
st.write({'x': t, 'y': float(value)}) | |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# | |
# Tick Data Server | |
# with ZeroMQ | |
# | |
import zmq | |
import time | |
import random | |
context = zmq.Context() | |
socket = context.socket(zmq.PUB) | |
socket.bind('tcp://127.0.0.1:5555') | |
AMZN = 100. | |
while True: | |
AMZN += random.gauss(0, 1) * 0.5 | |
msg = 'AMZN %s' % AMZN | |
socket.send_string(msg) | |
print(msg) | |
time.sleep(random.random() * 2) | |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# | |
# tpqoa is a wrapper class for the | |
# Oanda v20 API (RESTful & streaming) | |
# (c) Dr. Yves J. Hilpisch | |
# The Python Quants GmbH | |
# | |
import v20 | |
import pandas as pd | |
import datetime as dt | |
import configparser | |
class tpqoa(object): | |
''' tpqoa is a Python wrapper class for the Oanda v20 API. ''' | |
def __init__(self, conf_file): | |
''' Init function expecting a configuration file with | |
the following content: | |
[oanda_v20] | |
account_id = XYZ-ABC-... | |
access_token = ZYXCAB... | |
Parameters | |
========== | |
conf_file: string | |
path to and filename of the configuration file, e.g. '/home/me/oanda.cfg' | |
''' | |
self.config = configparser.ConfigParser() | |
self.config.read(conf_file) | |
self.access_token = self.config['oanda_v20']['access_token'] | |
self.account_id = self.config['oanda_v20']['account_id'] | |
self.ctx = v20.Context( | |
hostname='api-fxpractice.oanda.com', | |
port=443, | |
ssl=True, | |
application='sample_code', | |
token=self.access_token, | |
datetime_format='RFC3339') | |
self.ctx_stream = v20.Context( | |
hostname='stream-fxpractice.oanda.com', | |
port=443, | |
ssl=True, | |
application='sample_code', | |
token=self.access_token, | |
datetime_format='RFC3339' | |
) | |
self.suffix = '.000000000Z' | |
def get_instruments(self): | |
''' Retrieves and returns all instruments for the given account. ''' | |
resp = self.ctx.account.instruments(self.account_id) | |
instruments = resp.get('instruments') | |
instruments = [ins.dict() for ins in instruments] | |
instruments = [(ins['displayName'], ins['name']) | |
for ins in instruments] | |
return instruments | |
def transform_datetime(self, dt): | |
''' Transforms Python datetime object to string. ''' | |
if isinstance(dt, str): | |
dt = pd.Timestamp(dt).to_pydatetime() | |
return dt.isoformat('T') + self.suffix | |
def get_history(self, instrument, start, end, | |
granularity, price): | |
''' Retrieves historical data for instrument. | |
Parameters | |
========== | |
instrument: string | |
valid instrument name | |
start, end: datetime, str | |
Python datetime or string objects for start and end | |
granularity: string | |
a string like 'S5', 'M1' or 'D' | |
price: string | |
one of 'A' (ask) or 'B' (bid) | |
Returns | |
======= | |
data: pd.DataFrame | |
pandas DataFrame object with data | |
''' | |
start = self.transform_datetime(start) | |
end = self.transform_datetime(end) | |
raw = self.ctx.instrument.candles( | |
instrument=instrument, | |
fromTime=start, toTime=end, | |
granularity=granularity, price=price) | |
raw = raw.get('candles') | |
raw = [cs.dict() for cs in raw] | |
for cs in raw: | |
cs.update(cs['ask']) | |
del cs['ask'] | |
if len(raw) == 0: | |
return 'No data available.' | |
data = pd.DataFrame(raw) | |
data['time'] = pd.to_datetime(data['time']) | |
data = data.set_index('time') | |
data.index = pd.DatetimeIndex(data.index) | |
for col in list('ohlc'): | |
data[col] = data[col].astype(float) | |
return data | |
def create_order(self, instrument, units): | |
''' Places order with Oanda. | |
Parameters | |
========== | |
instrument: string | |
valid instrument name | |
units: int | |
number of units of instrument to be bought (positive int, eg 'units=50') | |
or to be sold (negative int, eg 'units=-100') | |
''' | |
request = self.ctx.order.market( | |
self.account_id, | |
instrument=instrument, | |
units=units, | |
) | |
order = request.get('orderFillTransaction') | |
print('\n\n', order.dict(), '\n') | |
def stream_data(self, instrument, stop=None): | |
''' Starts a real-time data stream. | |
Parameters | |
========== | |
instrument: string | |
valid instrument name | |
''' | |
self.stream_instrument = instrument | |
self.ticks = 0 | |
response = self.ctx_stream.pricing.stream( | |
self.account_id, snapshot=True, | |
instruments=instrument) | |
for msg_type, msg in response.parts(): | |
# print(msg_type, msg) | |
if msg_type == 'pricing.Price': | |
self.ticks +=1 | |
self.on_success(msg.time, | |
float(msg.bids[0].price), | |
float(msg.asks[0].price)) | |
if stop is not None: | |
if self.ticks >= stop: | |
break | |
def on_success(self, time, bid, ask): | |
''' Method called when new data is retrieved. ''' | |
print(time, bid, ask) | |
def get_account_summary(self, detailed=False): | |
''' Returns summary data for Oanda account.''' | |
if detailed is True: | |
response = self.ctx.account.get(self.account_id) | |
else: | |
response = self.ctx.account.summary(self.account_id) | |
raw = response.get('account') | |
return raw.dict() | |
def get_transactions(self, tid=0): | |
''' Retrieves and returns transactions data. ''' | |
response = self.ctx.transaction.since(self.account_id, id=tid) | |
transactions = response.get('transactions') | |
transactions = [t.dict() for t in transactions] | |
return transactions | |
def print_transactions(self, tid=0): | |
''' Prints basic transactions data. ''' | |
transactions = self.get_transactions(tid) | |
for trans in transactions: | |
templ = '%5s | %s | %9s | %12s' | |
print(templ % (trans['id'], | |
trans['time'], | |
trans['instrument'], | |
trans['units'])) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment