Created
October 8, 2016 13:13
-
-
Save yhilpisch/92e65a8919b11d9310b32b194b09741c to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# | |
# Backtesting Algo Strategies based on | |
# Logistic Regression with scikit-learn | |
# | |
# Yves Hilpisch | |
# ODSC London 2016 | |
# The Python Quants GmbH | |
# | |
import numpy as np | |
import pandas as pd | |
import seaborn as sns; sns.set() | |
from pandas_datareader import data as web | |
from sklearn import linear_model | |
class ScikitBacktest(object): | |
def __init__(self, sym): | |
self.lags = 5 | |
self.symbol = sym | |
self.get_data() | |
self.lm = linear_model.LogisticRegression(C=1e3) | |
def get_data(self): | |
d = web.DataReader(self.symbol, data_source='yahoo')['Adj Close'] | |
d = pd.DataFrame(d) | |
d.columns = [self.symbol] | |
d['returns'] = np.log(d / d.shift(1)) | |
self.data = d | |
def select_data(self, start, end): | |
d = self.data[(self.data.index >= start) & (self.data.index <= end)].copy() | |
return d | |
def get_matrix(self, start, end): | |
d = self.select_data(start, end) | |
m = np.zeros((self.lags+1, len(d)-self.lags)) | |
for i in range(self.lags+1): | |
if i == self.lags: | |
m[i] = d.returns.values[i:] | |
else: | |
m[i] = d.returns.values[i:i-self.lags] | |
self.matrix = m | |
def fit_model(self, start, end): | |
self.get_matrix(start, end) | |
self.lm.fit(self.matrix[:self.lags].T, np.sign(self.matrix[self.lags])) | |
def predict_moves(self, start, end): | |
self.get_matrix(start, end) | |
pred = self.lm.predict(self.matrix[:self.lags].T) | |
return pred | |
def run_strategy(self, start_tr, end_tr, start_te, end_te, lags): | |
self.lags = lags | |
self.fit_model(start_tr, end_tr) | |
pred = self.predict_moves(start_te, end_te) | |
d = self.select_data(start_te, end_te) | |
d['pred'] = 0.0 | |
d['pred'].ix[self.lags:] = pred | |
d['strategy'] = d.pred * d.returns | |
title = '%s to %s for %d lags' % (start_te, end_te, self.lags) | |
d[['returns', 'strategy']].ix[self.lags:].cumsum().apply(np.exp).plot(title=title) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment