Created
January 23, 2017 21:10
-
-
Save yhilpisch/a0a5dd7bfcaac3d3e9c18e5ea1080b95 to your computer and use it in GitHub Desktop.
14th Python for Quant Finance Meetup
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# | |
# Stock Market Prediction | |
# with Linear Regression | |
# | |
# The Python Quants GmbH | |
# | |
import numpy as np | |
import pandas as pd | |
from pandas_datareader import data as web | |
import seaborn as sns | |
sns.set() | |
class RegPred(object): | |
def __init__(self, symbol): | |
self.symbol = symbol | |
self.get_data() | |
def get_data(self): | |
self.data = pd.DataFrame(web.DataReader( | |
self.symbol, data_source='yahoo')['Adj Close']) | |
self.data.columns = ['prices'] | |
self.data['returns'] = np.log(self.data / self.data.shift(1)) | |
self.data.dropna(inplace=True) | |
def generate_matrix(self, lags): | |
self.matrix = np.zeros((lags + 1, len(self.data) - lags)) | |
for i in range(lags + 1): | |
if i == lags: | |
self.matrix[i] = self.data.returns.values[i:] | |
else: | |
self.matrix[i] = self.data.returns.values[i: i - lags] | |
def predict_returns(self, lags): | |
self.lags = lags | |
self.generate_matrix(lags) | |
reg = np.linalg.lstsq( | |
self.matrix[:lags].T, np.sign(self.matrix[lags]))[0] | |
self.pred = np.dot(self.matrix[:lags].T, reg) | |
def get_performance(self): | |
self.perf = self.data.ix[self.lags:].copy() | |
self.perf['positions'] = np.sign(self.pred) | |
self.perf['strategy'] = self.perf.positions * self.perf.returns | |
self.perf[['returns', 'strategy']].cumsum().apply(np.exp).plot() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment