Created
May 24, 2017 15:08
-
-
Save yindia/2576f4eb6701df56a8ac96e2747a47c0 to your computer and use it in GitHub Desktop.
Need Help to feed data To Tensor
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Action | Drama | Thriller | Comedy | Romance | Adventure | Animation | History | Sci-Fi | Family | Crime | Horror | Mystery | Fantasy | Documentary | Sports | War | Suspense | Musical | Biography | Social | Mythology | Classic | Devotional | Satire | Dance | Children | Noir | Period | CRIME | Magic | Short Film | ROMANCE | DEVOTIONAL | Patriotic | International Music | Festival | Theatre | Cricket | Concert | Screening | ACTION | Party | Bollywood | Romantic | Adult | Classical | Religious | Psychological | Spiritual | Music | Political | Zombie-Comedy | Romantic-Comedy | Action-Comedy | EDM | Fusion Music | Rock | Pop | Western | Kids | Screenings | Black / Dark Comedy | Fiction | Entertainment | Period | Emotional | Offbeat | Adaptation | Friendship | Love | Mature | Supernatural | Sports | Costume | HISTORY | Art | General | Special Interest | FAMILY | COMEDY | DRAMA | Obscure | Teenage | Black Comedy | SOCIAL | Classics | Short | MYSTERY | Urban | THRILLER | ROMANCE COMEDY | Love Triangle | Science fiction | Biopic | Spirituality | Performing Arts | Westren | Filmnoir | Costume Drama | Stunt | Historical | Science Fiction | Crime Thriller | Thiller | ACTION COMEDY | Romance Comedy | Road Movie | Arts & Culture | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from __future__ import print_function | |
import numpy as np | |
import pandas as pd | |
from sklearn.cluster import KMeans, DBSCAN, MiniBatchKMeans | |
import tensorflow as tf | |
MATRIX_SIZE = 110#features 110 | |
DATA_SET_URL = "./movie_data/input_data.csv" | |
CLUSTER = 50 | |
BATCH_SIZE = 1000 | |
def read_data(): | |
Xtr = [] | |
Xtr = np.array(pd.read_csv(DATA_SET_URL, header=None, skiprows=1),dtype="float") | |
Xtr = Xtr.astype("float") | |
return Xtr#Xtr#tf.cast(Xtr, tf.float32) #tf.constant(Xtr) | |
def placeholder_inputs(): | |
points = tf.placeholder(tf.float32, [None,110]) | |
return points | |
def fill_feed_dict(data_set,points): | |
#input_feed = data_set.next_batch(batch_size) | |
feed_dict = { | |
points : data_set | |
} | |
return feed_dict | |
def kmeanTF(points): | |
centroids = tf.Variable(tf.slice(tf.random_shuffle(points), [0, 0], [CLUSTER, -1])) | |
points_expanded = tf.expand_dims(points, 0) | |
centroids_expanded = tf.expand_dims(centroids, 1) | |
distances = tf.reduce_sum(tf.square(tf.sub(points_expanded, centroids_expanded)), 2) | |
assignments = tf.argmin(distances, 0) | |
means = [] | |
for c in xrange(CLUSTER): | |
means.append(tf.reduce_mean( | |
tf.gather(points, | |
tf.reshape( | |
tf.where( | |
tf.equal(assignments, c) | |
),[1,-1]) | |
),reduction_indices=[1])) | |
new_centroids = tf.concat(0, means) | |
update_centroids = tf.assign(centroids, new_centroids) | |
return update_centroids, centroids, assignments | |
def run_training(): | |
data_set = read_data(); | |
points = placeholder_inputs(); | |
feed_dict = fill_feed_dict(data_set,points) | |
assignment_values,centroid_value= kmeanTF(points); | |
init = tf.initialize_all_variables() | |
# Create a session for running Ops on the Graph. | |
sess = tf.InteractiveSession() | |
# Run the Op to initialize the variables. | |
sess.run(init) | |
for step in xrange(5): | |
[assignment_values] = sess.run([assignments],feed_dict) | |
print("assignment_values" + "\n",assignment_values) | |
run_training() | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment