Skip to content

Instantly share code, notes, and snippets.

@yindia
Last active September 27, 2017 21:01
Show Gist options
  • Save yindia/5762cf339301b4b979acb16f3cc8fdc9 to your computer and use it in GitHub Desktop.
Save yindia/5762cf339301b4b979acb16f3cc8fdc9 to your computer and use it in GitHub Desktop.
Tensor flow basic
import tensorflow as tf #importing the tensorflow library
#Input node for computational graph as input
data = [
[1, 0, 0],
[1, 0, 1],
[1, 1, 1],
[0, 1, 1],
]
#Input node for computational graph as output
label = [
[4],
[5],
[2],
[1],
]
w = tf.Variable(tf.random_normal([3, 1]), dtype=tf.float32)
#Machine Learning Model
predication = tf.add(tf.matmul(data, w))
#Learner
error = tf.subtract(label, predication)
mse = tf.reduce_mean(tf.square(error)) # calculate root mean square
delta = tf.matmul(data, error, transpose_a=True)
train = tf.assign(w, tf.add(w, delta))
#Session
sess = tf.Session()
sess.run(tf.global_variables_initializer())
epoch, max_epochs = 0, 10
while epoch < max_epochs:
epoch += 1
err, _ = sess.run([mse, train])
print('epoch:', epoch, 'mse:', err)
print(sess.run(w))
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment