Last active
September 27, 2017 21:01
-
-
Save yindia/5762cf339301b4b979acb16f3cc8fdc9 to your computer and use it in GitHub Desktop.
Tensor flow basic
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import tensorflow as tf #importing the tensorflow library | |
#Input node for computational graph as input | |
data = [ | |
[1, 0, 0], | |
[1, 0, 1], | |
[1, 1, 1], | |
[0, 1, 1], | |
] | |
#Input node for computational graph as output | |
label = [ | |
[4], | |
[5], | |
[2], | |
[1], | |
] | |
w = tf.Variable(tf.random_normal([3, 1]), dtype=tf.float32) | |
#Machine Learning Model | |
predication = tf.add(tf.matmul(data, w)) | |
#Learner | |
error = tf.subtract(label, predication) | |
mse = tf.reduce_mean(tf.square(error)) # calculate root mean square | |
delta = tf.matmul(data, error, transpose_a=True) | |
train = tf.assign(w, tf.add(w, delta)) | |
#Session | |
sess = tf.Session() | |
sess.run(tf.global_variables_initializer()) | |
epoch, max_epochs = 0, 10 | |
while epoch < max_epochs: | |
epoch += 1 | |
err, _ = sess.run([mse, train]) | |
print('epoch:', epoch, 'mse:', err) | |
print(sess.run(w)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment