Skip to content

Instantly share code, notes, and snippets.

@yiwenl
Last active September 15, 2024 08:14
Show Gist options
  • Save yiwenl/3f804e80d0930e34a0b33359259b556c to your computer and use it in GitHub Desktop.
Save yiwenl/3f804e80d0930e34a0b33359259b556c to your computer and use it in GitHub Desktop.
vec2 rotate(vec2 v, float a) {
float s = sin(a);
float c = cos(a);
mat2 m = mat2(c, s, -s, c);
return m * v;
}
mat4 rotationMatrix(vec3 axis, float angle) {
axis = normalize(axis);
float s = sin(angle);
float c = cos(angle);
float oc = 1.0 - c;
return mat4(oc * axis.x * axis.x + c, oc * axis.x * axis.y - axis.z * s, oc * axis.z * axis.x + axis.y * s, 0.0,
oc * axis.x * axis.y + axis.z * s, oc * axis.y * axis.y + c, oc * axis.y * axis.z - axis.x * s, 0.0,
oc * axis.z * axis.x - axis.y * s, oc * axis.y * axis.z + axis.x * s, oc * axis.z * axis.z + c, 0.0,
0.0, 0.0, 0.0, 1.0);
}
vec3 rotate(vec3 v, vec3 axis, float angle) {
mat4 m = rotationMatrix(axis, angle);
return (m * vec4(v, 1.0)).xyz;
}
@maximumsomething
Copy link

Why does it need to be a mat4?

@benbruland
Copy link

I'm not sure whether or not it needs to be a mat4. It is probably a mat4 because we're dealing with homogeneous coordinates. Homogeneous coordinates unlock translations under matrix multiplication, as well as projective transformations. To rotate something we first translate it to the rotation axis, apply the rotation, and then translate it back. This is called a similarity transform.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment