Last active
May 2, 2019 04:49
-
-
Save yjucho1/fa517213628e0f8fcbf10a96cbe01141 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from multiprocessing import cpu_count | |
from joblib import Parallel | |
from joblib import delayed | |
from warnings import catch_warnings | |
from warnings import filterwarnings | |
from statsmodels.tsa.statespace.sarimax import SARIMAX | |
import time | |
# one-step sarima forecast | |
def sarima_forecast(data, config): | |
order, sorder, trend = config | |
model = SARIMAX(data, order=order, seasonal_order=sorder, | |
trend=trend, enforce_stationarity=False, enforce_invertibility=False) | |
model_fit = model.fit(disp=False) | |
aic = model_fit.aic | |
return aic | |
# score a model, return None on failure | |
def score_model(data, cfg, debug=False): | |
result = None | |
key = str(cfg) | |
if debug: | |
result = sarima_forecast(data, cfg) | |
else: | |
try: | |
with catch_warnings(): | |
filterwarnings("ignore") | |
result = sarima_forecast(data, cfg) | |
except: | |
error = None | |
if result is not None: | |
print(' > Model[%s] %.3f' % (key, result)) | |
return (key, result) | |
# grid search configs | |
def grid_search(data, cfg_list, parallel=True): | |
scores = None | |
if parallel: | |
executor = Parallel(n_jobs=cpu_count(), backend='multiprocessing') | |
tasks = (delayed(score_model)(data, cfg) for cfg in cfg_list) | |
scores = executor(tasks) | |
else: | |
scores = [score_model(data, cfg) for cfg in cfg_list] | |
scores = [r for r in scores if r[1] != None] | |
scores.sort(key=lambda tup: tup[1]) | |
return scores | |
# create a set of sarima configs to try | |
def sarima_configs(seasonal=[24]): | |
models = list() | |
# define config lists | |
p_params = [0, 1, 2] | |
d_params = [0, 1] | |
q_params = [0, 1, 2] | |
t_params = ['n','c','t','ct'] | |
P_params = [0, 1, 2] | |
D_params = [0, 1] | |
Q_params = [0, 1, 2] | |
m_params = seasonal | |
# create config instances | |
for p in p_params: | |
for d in d_params: | |
for q in q_params: | |
for t in t_params: | |
for P in P_params: | |
for D in D_params: | |
for Q in Q_params: | |
for m in m_params: | |
cfg = [(p,d,q), (P,D,Q,m), t] | |
models.append(cfg) | |
return models | |
if __name__ == '__main__': | |
### grid search for model's order selection | |
# it takes long time. | |
data = list(df.pm25Value) | |
cfg_list = sarima_configs() | |
print('There are ' + str(len(cfg_list)) + ' alternatives.') | |
scores = grid_search(data, cfg_list) | |
print('done') | |
for cfg, error in scores[:3]: | |
print(cfg, error) | |
pd.to_pickle(scores, 'score.pkl') | |
## best model : SARIMA((2, 0, 2), (1, 1, 2, 24), 'n') | |
start = time.time() | |
order, sorder, trend = (2, 0, 2), (1, 1, 2, 24), 'n' | |
model = SARIMAX(df.pm25Value, order=order, seasonal_order=sorder, | |
trend=trend, enforce_stationarity=False, enforce_invertibility=False) | |
model_fit = model.fit(disp=False) | |
print(time.time()-start) ### 212.13128 (it takes some time. i.e. above 200 seconds.) | |
resid = model_fit.resid | |
## residual plot | |
plt.figure(figsize=(12,4)) | |
plt.plot(resid) | |
plt.show() | |
## residual - acf, pacf | |
fig = plt.figure(figsize=(12,8)) | |
ax1 = fig.add_subplot(211) | |
fig = sm.graphics.tsa.plot_acf(resid, lags=100, ax=ax1) | |
ax2 = fig.add_subplot(212) | |
fig = sm.graphics.tsa.plot_pacf(resid, lags=100, ax=ax2) | |
plt.show() | |
## residual - qq plot | |
sm.graphics.qqplot(resid, line='q',fit=True) | |
plt.show() | |
## residual - nomality test | |
print(stats.normaltest(resid)) | |
## forcast | |
# AR(1) model's RMSE: 3.006486217286414 | |
# AR(3) model's RMSE: 2.9717700323027256 | |
# AR(8) model's RMSE: 2.9174007777104203 | |
def mean_forecast_err(y, yhat): | |
return np.sqrt(y.sub(yhat)**2).mean() | |
predict_pm25 = model_fit.predict(2000, 2200, dynamic=False) | |
print('RMSE : ' + str(mean_forecast_err(df.pm25Value, predict_pm25))) | |
predict_dyT = model_fit.predict(2000, 2200, dynamic=True) | |
predict_dyF = model_fit.predict(2000, 2200, dynamic=False) | |
plt.figure(figsize=(12,4)) | |
plt.plot(df.pm25Value) | |
plt.plot(predict_dyT) | |
plt.plot(predict_dyF) | |
plt.legend(['PM2.5(true)', 'forcast_dynamic_True', 'forcast_dynamic_False']) | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
haha