Last active
July 19, 2021 19:03
-
-
Save yoavram/378777660e13b77d6daf to your computer and use it in GitHub Desktop.
Run Lasso Regression with CV to find alpha on the California Housing dataset using Scikit-Learn
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import matplotlib.pyplot as plt | |
import numpy as np | |
import sklearn.datasets | |
import sklearn.cross_validation as cv | |
from sklearn import linear_model | |
dataset = sklearn.datasets.fetch_california_housing() | |
X = dataset['data'] | |
y = dataset['target'] | |
X_train, X_test, y_train, y_test = cv.train_test_split(X, y, test_size=0.25, random_state=0) | |
alphas = np.logspace(-4, -1, 10) | |
scores = np.empty_like(alphas) | |
for i,a in enumerate(alphas): | |
lasso = linear_model.Lasso() | |
lasso.set_params(alpha=a) | |
lasso.fit(X_train, y_train) | |
scores[i] = lasso.score(X_test, y_test) | |
print(a, lasso.coef_) | |
lassocv = linear_model.LassoCV() | |
lassocv.fit(X, y) | |
lassocv_score = lassocv.score(X, y) | |
lassocv_alpha = lassocv.alpha_ | |
print('CV', lassocv.coef_) | |
plt.plot(alphas, scores, '-ko') | |
plt.axhline(lassocv_score, color='b', ls='--') | |
plt.axvline(lassocv_alpha, color='b', ls='--') | |
plt.xlabel(r'$\alpha$') | |
plt.ylabel('Score') | |
plt.xscale('log') | |
sns.despine(offset=15) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment