Skip to content

Instantly share code, notes, and snippets.

@yogabonito
Created July 30, 2017 22:00
Show Gist options
  • Save yogabonito/88d9217463bc9677b0a520d417bc22c6 to your computer and use it in GitHub Desktop.
Save yogabonito/88d9217463bc9677b0a520d417bc22c6 to your computer and use it in GitHub Desktop.
"Improved" Basic and Reactive Tabu variants of AZP
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# AZP-BasicTabu demo"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The basic tabu version of the AZP as described on p. 432 in Openshaw & Rao (1995) is lacking a stopping condition. In [commit 8e56e23](https://github.com/yogabonito/region/commit/8e56e23e2c669b2b676fd8db97044c63cdb7d84d) we have added a termination condition: If a clustering has been visited a certain number of times (defined by the `repetitions_before_termination` argument), a termination flag is set allowing only improving moves from that point on. When no improving move is left, the result is returned.\n",
"\n",
"With this modification we get the optimal solutions in all of our three examples below."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"%matplotlib inline"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"from region.azp import *"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"import numpy as np\n",
"from matplotlib import pyplot as plt\n",
"import pandas as pd\n",
"import geopandas as gpd\n",
"from shapely.geometry import Polygon"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Example 1: 3x3 lattice"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Inputs"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQIAAAD8CAYAAACcoKqNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAADYBJREFUeJzt3W2oHuWdx/Hvb2NsF7Q1NKFKkmMsDSxabE0PqW7bbVgp\nG0Mx0FpWoT4US+iDrMW+WNuFSH2z+MZSV7cSqlRdUXdV5FQiIq2s9oWpxzQ+Zl1OhWIkrNG0idJW\nN+W/L+6JPXs88R7NzH2f6PcDQ+bhOjP/XDn3LzNzD9ekqpD03vYX4y5A0vgZBJIMAkkGgSQMAkkY\nBJIwCCRhEEjCIJAEHDWuAy9durRWrVo1rsNL7wmPPfbYS1W1bFi7sQXBqlWrmJ6eHtfhpfeEJL9p\n085LA0kGgSSDQBIGgSQMAkm0DIIk65M8m2QmyeXzbH9fkjua7duSrOq6UEn9GRoESRYB1wFnAScD\n5yU5eU6zi4HfVtVHgR8AV3VdqKT+tDkjWAvMVNVzVfU6cDuwcU6bjcBNzfydwJlJ0l2ZkvrU5oGi\n5cDzs5Z3AZ86VJuqOpBkH/Ah4KXZjZJsAjYBTExMtCrQPJHebMmSJezdu7ez/Y30ycKq2gJsAZic\nnGw9auqf9v+wt5qOFIs+cCn/+T//Nu4yxu5zH/4KV//q4XGXMXaXnfbZTvfX5tLgBWDlrOUVzbp5\n2yQ5Cvgg8HIXBUrqX5sgeBRYneSkJEcD5wJTc9pMARc28+cAPy/HSZeOGEMvDZpr/kuA+4FFwI1V\n9XSSK4HpqpoCbgBuSTID7GUQFpKOEK3uEVTVVmDrnHWbZ83/Efhyt6VJGhWfLJRkEEgyCCRhEEjC\nIJCEQSAJg0ASBoEkDAJJGASSMAgkYRBIwiCQhEEgCYNAEgaBJAwCSRgEkjAIJGEQSMIgkIRBIAmD\nQBIGgSRaBkGS9UmeTTKT5PJ5tl+UZE+SHc30te5LldSXoW86SrIIuA74PINXoj+aZKqqnpnT9I6q\nuqSHGiX1rM0ZwVpgpqqeq6rXgduBjf2WJWmU2gTBcuD5Wcu7mnVzfSnJE0nuTLJynu0k2ZRkOsn0\nnj173kG5kvrQ1c3CnwKrqupU4AHgpvkaVdWWqpqsqslly5Z1dGhJh6tNELwAzP4ffkWz7g1V9XJV\nvdYs/hj4ZDflSRqFNkHwKLA6yUlJjgbOBaZmN0hywqzFs4Gd3ZUoqW9DvzWoqgNJLgHuBxYBN1bV\n00muBKaragr4hyRnAweAvcBFPdYsqWNDgwCgqrYCW+es2zxr/rvAd7stTdKo+GShJINAkkEgCYNA\nEgaBJAwCSRgEkjAIJGEQSMIgkIRBIAmDQBIGgSQMAkkYBJIwCCRhEEjCIJCEQSAJg0ASBoEkDAJJ\nGASSaBEESW5M8mKSpw6xPUmuSTLTvAR1TfdlSupTmzOCnwDr32L7WcDqZtoE/Ojwy5I0SkODoKoe\nYvAas0PZCNxcA48Ax815F6KkBa6LewTLgednLe9q1kk6QrR692FXkmxicPnAxMRE659b9IFL+yrp\niPK5D39l3CUsCJed9tlxlzB2STrdXxdB8AKwctbyimbdm1TVFmALwOTkZLU9wC1XTQ1v9C53/j+e\nzc3/+rNxlzF2F3zzTK7e/vC4yxi7y9Z0G4ZdXBpMARc03x6cDuyrqt0d7FfSiAw9I0hyG7AOWJpk\nF3AFsBigqq5n8Lr0DcAM8Hvgq30VK6kfQ4Ogqs4bsr2Ab3VWkaSR88lCSQaBJINAEgaBJAwCSRgE\nkjAIJGEQSMIgkIRBIAmDQBIGgSQMAkkYBJIwCCRhEEjCIJCEQSAJg0ASBoEkDAJJGASSMAgkYRBI\nokUQJLkxyYtJnjrE9nVJ9iXZ0Uybuy9TUp/avAT1J8C1wM1v0ebhqvpCJxVJGrmhZwRV9RCwdwS1\nSBqTru4RnJHk8ST3JTmlo31KGpE2lwbDbAdOrKpXk2wA7gFWz9cwySZgE8DExEQHh5bUhcM+I6iq\n/VX1ajO/FVicZOkh2m6pqsmqmly2bNnhHlpSRw47CJIcnyTN/Npmny8f7n4ljc7QS4MktwHrgKVJ\ndgFXAIsBqup64BzgG0kOAH8Azq2q6q1iSZ0bGgRVdd6Q7dcy+HpR0hHKJwslGQSSDAJJGASSMAgk\nYRBIwiCQhEEgCYNAEgaBJAwCSRgEkjAIJGEQSMIgkIRBIAmDQBIGgSQMAkkYBJIwCCRhEEjCIJCE\nQSCJFkGQZGWSB5M8k+TpJJfO0yZJrkkyk+SJJGv6KVdSH9q8DfkA8J2q2p7kWOCxJA9U1TOz2pzF\n4A3Iq4FPAT9q/pR0BBh6RlBVu6tqezP/CrATWD6n2Ubg5hp4BDguyQmdVyupF2/rHkGSVcBpwLY5\nm5YDz89a3sWbw0LSQlVVrSbgGOAx4IvzbLsX+Mys5Z8Bk/O02wRMA9MTExPVBuDk5DRnStL28zPd\n5vPd5h4BSRYDdwG3VtXd8zR5AVg5a3lFs+7/qaotwBaAycnJanNsgJuuuKNt03etC7//99zyw/vH\nXcbYnX/p39kPDPqhS22+NQhwA7Czqq4+RLMp4ILm24PTgX1VtbvDOiX1qM0ZwaeB84Enk+xo1n0P\nmACoquuBrcAGYAb4PfDV7kuV1JehQVBVvwAypE0B3+qqKEmj5ZOFkgwCSQaBJAwCSRgEkjAIJGEQ\nSMIgkIRBIAmDQBIGgSQMAkkYBJIwCCRhEEjCIJCEQSAJg0ASBoEkDAJJGASSMAgkYRBIwiCQRLtX\nnq1M8mCSZ5I8neTSedqsS7IvyY5m2txPuZL60OaVZweA71TV9iTHAo8leaCqnpnT7uGq+kL3JUrq\n29AzgqraXVXbm/lXgJ3A8r4LkzQ6b+seQZJVwGnAtnk2n5Hk8ST3JTmlg9okjUibSwMAkhwD3AV8\nu6r2z9m8HTixql5NsgG4B1g9zz42AZsAJiYm3nHRkrrV6owgyWIGIXBrVd09d3tV7a+qV5v5rcDi\nJEvnabelqiaranLZsmWHWbqkrrT51iDADcDOqrr6EG2Ob9qRZG2z35e7LFRSf9pcGnwaOB94MsmO\nZt33gAmAqroeOAf4RpIDwB+Ac6uqeqhXUg+GBkFV/QLIkDbXAtd2VZSk0fLJQkkGgSSDQBIGgSQM\nAkkYBJIwCCRhEEjCIJCEQSAJg0ASBoEkDAJJGASSMAgkYRBIwiCQhEEgCYNAEgaBJAwCSRgEkjAI\nJGEQSKLdK8/en+SXzZuOn07y/XnavC/JHUlmkmxr3pos6QjR5ozgNeBvq+rjwCeA9UlOn9PmYuC3\nVfVR4AfAVd2WKalPQ4OgBl5tFhc309z3Gm4Ebmrm7wTOPPhSVEkLX9vXoi9qXoD6IvBAVW2b02Q5\n8DxAVR0A9gEf6rJQST2qqtYTcBzwIPCxOeufAlbMWv41sHSen98ETAPTExMT1caSJUuKwRnIe3pK\nMvYaFsJkPwymJUuWtPr8ANNtPtttXov+hqr6XZIHgfUMPvwHvQCsBHYlOQr4IPDyPD+/BdgCMDk5\nWW2OuXfv3rdToqR3oM23BsuSHNfM/yXweeC/5jSbAi5s5s8Bft6kkaQjQJszghOAm5IsYhAc/15V\n9ya5ksFpxxRwA3BLkhlgL3BubxVL6tzQIKiqJ4DT5lm/edb8H4Evd1uapFHxyUJJBoEkg0ASBoEk\nDAJJQMb1dX+SPcBvWjRdCrzUcznWYA3v1hpOrKplwxqNLQjaSjJdVZPWYA3W0F8NXhpIMggkHRlB\nsGXcBWANB1nDwLuuhgV/j0BS/46EMwJJPVswQZBkfZJnmwFQL59ne+8DpLao4aIke5LsaKavdXz8\nG5O8mOSpQ2xPkmua+p5IsqbL47esYV2SfbP6YPN87Q6zhpVJHkzyTDNg7qXztOm1L1rW0GtfjHTg\n4LczQlFfE7CIwahGHwGOBh4HTp7T5pvA9c38ucAdY6jhIuDaHvvhb4A1wFOH2L4BuA8IcDqwbQw1\nrAPu7fn34QRgTTN/LPDf8/xb9NoXLWvotS+av9sxzfxiYBtw+pw2nXwuFsoZwVpgpqqeq6rXgdsZ\nDIg6W98DpLapoVdV9RCD8RwOZSNwcw08AhyX5IQR19C7qtpdVdub+VeAnQzGxZyt175oWUOvmr/b\nSAYOXihB8Mbgp41dvLnT+x4gtU0NAF9qTkXvTLKyw+O30bbGvp3RnK7el+SUPg/UnOqexuB/w9lG\n1hdvUQP03BejGjh4oQTBkeKnwKqqOhV4gD8n8XvJdgaPrX4c+Bfgnr4OlOQY4C7g21W1v6/jHEYN\nvfdFVf2pqj4BrADWJvlY18eAhRMEBwc/PWhFs27eNm81QGqfNVTVy1X1WrP4Y+CTHR6/jTb91Kuq\n2n/wdLWqtgKLkyzt+jhJFjP4AN5aVXfP06T3vhhWw6j6otn/7xiMIL5+zqZOPhcLJQgeBVYnOSnJ\n0QxuekzNadP3AKlDa5hzDXo2g+vGUZoCLmjumJ8O7Kuq3aMsIMnxB69Bk6xl8DvUZSDT7P8GYGdV\nXX2IZr32RZsa+u6LjHLg4L7ueL6DO6QbGNyZ/TXwT826K4Gzm/n3A/8BzAC/BD4yhhr+GXiawTcK\nDwJ/1fHxbwN2A//L4Jr3YuDrwNfrz3eRr2vqexKY7KEPhtVwyaw+eAT46x5q+AyDm2JPADuaacMo\n+6JlDb32BXAq8KumhqeAzX19LnyyUNKCuTSQNEYGgSSDQJJBIAmDQBIGgSQMAkkYBJKA/wNkdlDh\n4PSM+QAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7f72464575f8>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"geometry = [\n",
" Polygon([(x, y),\n",
" (x, y+1),\n",
" (x+1, y+1),\n",
" (x+1, y)]) for y in range(3) for x in range(3)\n",
"]\n",
"\n",
"areas_gdf = gpd.GeoDataFrame(\n",
" {\"values\": [726.7, 623.6, 487.3,\n",
" 200.4, 245.0, 481.0,\n",
" 170.9, 225.9, 226.9]},\n",
" geometry=geometry)\n",
"areas_gdf.plot(column=\"values\")\n",
"plt.gca().invert_yaxis()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Clustering"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### &nbsp;&nbsp;&nbsp;&nbsp;without initial solution"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"scrolled": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"generate_initial_sol got a <class 'networkx.classes.graph.Graph'>\n",
"step 1\n",
"distribute_regions_among_components got a <class 'networkx.classes.graph.Graph'>\n",
"{<networkx.classes.graph.Graph object at 0x7f7246413630>: 2}\n",
"Init with: [{0, 1, 3, 4, 5, 6, 7, 8}, {2}]\n",
"visited []\n",
"=============================================\n",
"obj_value: 6790.0\n",
"[{0, 1, 3, 4, 5, 6, 7, 8}, {2}]\n",
"-----------------------------------\n",
"step 1\n",
" best move: move(area=1, from_idx=0, to_idx=1) objval_diff: -2158.3\n",
"step 2\n",
"[{0, 1, 3, 4, 5, 6, 7, 8}, {2}]\n",
"IMPROVING MOVE\n",
" move 1 from {0, 1, 3, 4, 5, 6, 7, 8} to {2}\n",
"visited [{frozenset({2}), frozenset({0, 1, 3, 4, 5, 6, 7, 8})}]\n",
"=============================================\n",
"obj_value: 4631.7\n",
"[{0, 3, 4, 5, 6, 7, 8}, {1, 2}]\n",
"-----------------------------------\n",
"step 1\n",
" best move: move(area=0, from_idx=0, to_idx=1) objval_diff: -2467.6\n",
"step 2\n",
"[{0, 3, 4, 5, 6, 7, 8}, {1, 2}]\n",
"IMPROVING MOVE\n",
" move 0 from {0, 3, 4, 5, 6, 7, 8} to {1, 2}\n",
"visited [{frozenset({2}), frozenset({0, 1, 3, 4, 5, 6, 7, 8})}, {frozenset({1, 2}), frozenset({0, 3, 4, 5, 6, 7, 8})}]\n",
"=============================================\n",
"obj_value: 2164.1\n",
"[{3, 4, 5, 6, 7, 8}, {0, 1, 2}]\n",
"-----------------------------------\n",
"step 1\n",
" best move: move(area=5, from_idx=0, to_idx=1) objval_diff: -941.3\n",
"step 2\n",
"[{3, 4, 5, 6, 7, 8}, {0, 1, 2}]\n",
"IMPROVING MOVE\n",
" move 5 from {3, 4, 5, 6, 7, 8} to {0, 1, 2}\n",
"visited [{frozenset({2}), frozenset({0, 1, 3, 4, 5, 6, 7, 8})}, {frozenset({1, 2}), frozenset({0, 3, 4, 5, 6, 7, 8})}, {frozenset({0, 1, 2}), frozenset({3, 4, 5, 6, 7, 8})}]\n",
"=============================================\n",
"obj_value: 1222.8\n",
"[{3, 4, 6, 7, 8}, {0, 1, 2, 5}]\n",
"-----------------------------------\n",
"step 1\n",
" best move: move(area=4, from_idx=0, to_idx=1) objval_diff: 1182.7\n",
"step 2\n",
"step 3\n",
"Tabu: deque([move(area=1, from_idx=1, to_idx=0), move(area=0, from_idx=1, to_idx=0), move(area=5, from_idx=1, to_idx=0)], maxlen=20)\n",
"step 4\n",
"[{3, 4, 6, 7, 8}, {0, 1, 2, 5}]\n",
"No improving, no aspiration ==> do the best you can\n",
" move 4 from {3, 4, 6, 7, 8} to {0, 1, 2, 5}\n",
"visited [{frozenset({2}), frozenset({0, 1, 3, 4, 5, 6, 7, 8})}, {frozenset({1, 2}), frozenset({0, 3, 4, 5, 6, 7, 8})}, {frozenset({0, 1, 2}), frozenset({3, 4, 5, 6, 7, 8})}, {frozenset({8, 3, 4, 6, 7}), frozenset({0, 1, 2, 5})}]\n",
"=============================================\n",
"obj_value: 2405.5\n",
"[{3, 6, 7, 8}, {0, 1, 2, 4, 5}]\n",
"-----------------------------------\n",
"step 1\n",
" best move: move(area=8, from_idx=0, to_idx=1) objval_diff: 1345.6\n",
"step 2\n",
"step 3\n",
"Tabu: deque([move(area=1, from_idx=1, to_idx=0), move(area=0, from_idx=1, to_idx=0), move(area=5, from_idx=1, to_idx=0), move(area=4, from_idx=1, to_idx=0)], maxlen=20)\n",
"[{3, 6, 7, 8}, {0, 1, 2, 4, 5}]\n",
"ASPIRATION MOVE\n",
" move 4 from {0, 1, 2, 4, 5} to {3, 6, 7, 8}\n",
"visited [{frozenset({2}), frozenset({0, 1, 3, 4, 5, 6, 7, 8})}, {frozenset({1, 2}), frozenset({0, 3, 4, 5, 6, 7, 8})}, {frozenset({0, 1, 2}), frozenset({3, 4, 5, 6, 7, 8})}, {frozenset({8, 3, 4, 6, 7}), frozenset({0, 1, 2, 5})}, {frozenset({0, 1, 2, 4, 5}), frozenset({8, 3, 6, 7})}]\n",
"=============================================\n",
"obj_value: 1222.8\n",
"[{3, 4, 6, 7, 8}, {0, 1, 2, 5}]\n",
"-----------------------------------\n",
"step 1\n",
" best move: move(area=8, from_idx=0, to_idx=1) objval_diff: 1309.4\n",
"step 2\n",
"step 3\n",
"Tabu: deque([move(area=1, from_idx=1, to_idx=0), move(area=0, from_idx=1, to_idx=0), move(area=5, from_idx=1, to_idx=0), move(area=4, from_idx=1, to_idx=0), move(area=4, from_idx=0, to_idx=1)], maxlen=20)\n",
"step 4\n",
"[{3, 4, 6, 7, 8}, {0, 1, 2, 5}]\n",
"No improving, no aspiration ==> do the best you can\n",
" move 8 from {3, 4, 6, 7, 8} to {0, 1, 2, 5}\n",
"visited [{frozenset({2}), frozenset({0, 1, 3, 4, 5, 6, 7, 8})}, {frozenset({1, 2}), frozenset({0, 3, 4, 5, 6, 7, 8})}, {frozenset({0, 1, 2}), frozenset({3, 4, 5, 6, 7, 8})}, {frozenset({8, 3, 4, 6, 7}), frozenset({0, 1, 2, 5})}, {frozenset({0, 1, 2, 4, 5}), frozenset({8, 3, 6, 7})}, {frozenset({8, 3, 4, 6, 7}), frozenset({0, 1, 2, 5})}]\n",
"=============================================\n",
"obj_value: 2532.2\n",
"[{3, 4, 6, 7}, {0, 1, 2, 5, 8}]\n",
"-----------------------------------\n",
"step 1\n",
" best move: move(area=7, from_idx=0, to_idx=1) objval_diff: 1316.4\n",
"step 2\n",
"step 3\n",
"Tabu: deque([move(area=1, from_idx=1, to_idx=0), move(area=0, from_idx=1, to_idx=0), move(area=5, from_idx=1, to_idx=0), move(area=4, from_idx=1, to_idx=0), move(area=4, from_idx=0, to_idx=1), move(area=8, from_idx=1, to_idx=0)], maxlen=20)\n",
"[{3, 4, 6, 7}, {0, 1, 2, 5, 8}]\n",
"ASPIRATION MOVE\n",
" move 8 from {0, 1, 2, 5, 8} to {3, 4, 6, 7}\n",
"visited [{frozenset({2}), frozenset({0, 1, 3, 4, 5, 6, 7, 8})}, {frozenset({1, 2}), frozenset({0, 3, 4, 5, 6, 7, 8})}, {frozenset({0, 1, 2}), frozenset({3, 4, 5, 6, 7, 8})}, {frozenset({8, 3, 4, 6, 7}), frozenset({0, 1, 2, 5})}, {frozenset({0, 1, 2, 4, 5}), frozenset({8, 3, 6, 7})}, {frozenset({8, 3, 4, 6, 7}), frozenset({0, 1, 2, 5})}, {frozenset({0, 1, 2, 5, 8}), frozenset({3, 4, 6, 7})}]\n",
"VISITED [{3, 4, 6, 7, 8}, {0, 1, 2, 5}] FOR 2 TIMES --> TERMINATING BEFORE NEXT NON-IMPROVING MOVE\n",
"=============================================\n",
"obj_value: 1222.8\n",
"[{3, 4, 6, 7, 8}, {0, 1, 2, 5}]\n",
"-----------------------------------\n",
"step 1\n",
" best move: move(area=3, from_idx=0, to_idx=1) objval_diff: 1390.9\n",
"step 2\n",
"step 3\n",
"Tabu: deque([move(area=1, from_idx=1, to_idx=0), move(area=0, from_idx=1, to_idx=0), move(area=5, from_idx=1, to_idx=0), move(area=4, from_idx=1, to_idx=0), move(area=4, from_idx=0, to_idx=1), move(area=8, from_idx=1, to_idx=0), move(area=8, from_idx=0, to_idx=1)], maxlen=20)\n",
"step 4\n",
"[{3, 4, 6, 7, 8}, {0, 1, 2, 5}]\n",
"No improving, no aspiration ==> do the best you can\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQIAAAD8CAYAAACcoKqNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAADUlJREFUeJzt3V+IXvWdx/H3Z2NsF5QamgElyRhrA4sWW+2Qxu2yhC2F\nGIq5qIV4UWuxDHUrq9Ab24WU9WbpjQVXUYYq1SLqropMS6QITbG9MDXJRs2fdRmFYiRgTNpEaaub\n5bsXz4mdHSc+R3POMzP6fsEh589vzvnmlzyfOec8h/NLVSHpo+2vFroASQvPIJBkEEgyCCRhEEjC\nIJCEQSAJg0ASBoEk4KyFOvDKlStr7dq1C3V46SNh9+7dr1fV2LB2CxYEa9euZdeuXQt1eOkjIcnv\n2rTz0kCSQSDJIJCEQSAJg0ASLYMgyaYkLyaZSXLrPNs/luSRZvvOJGu7LlRSf4YGQZJlwF3AVcAl\nwLVJLpnT7Abg91X1aeBHwA+7LlRSf9qcEawHZqrq5ap6G3gY2DKnzRbg/mb+UeBLSdJdmZL61OaB\nolXAK7OWDwFfOF2bqjqZ5DjwSeD12Y2STAKTAOPj460KNE+kd1uxYgXHjh3rbH8jfbKwqqaAKYCJ\niYnWb009cuRIbzUtFWNjY/YD9sMpY2NDnxp+X9pcGrwKrJm1vLpZN2+bJGcBnwCOdlGgpP61CYJn\ngXVJLkpyNrAVmJ7TZhr4RjN/DfDL8j3p0pIx9NKguea/CfgFsAy4r6r2J7kN2FVV08C9wE+TzADH\nGISFpCWi1T2CqtoObJ+zbtus+T8DX+u2NEmj4pOFkgwCSQaBJAwCSRgEkjAIJGEQSMIgkIRBIAmD\nQBIGgSQMAkkYBJIwCCRhEEjCIJCEQSAJg0ASBoEkDAJJGASSMAgkYRBIwiCQRMsgSLIpyYtJZpLc\nOs/265McSbK3mb7VfamS+jJ0pKMky4C7gC8zGBL92STTVXVgTtNHquqmHmqU1LM2ZwTrgZmqermq\n3gYeBrb0W5akUWoTBKuAV2YtH2rWzfXVJM8neTTJmnm2k2Qyya4kuxzjXlo8urpZ+DNgbVVdBjwF\n3D9fo6qaqqqJqpoYGxvr6NCSzlSbIHgVmP0bfnWz7h1VdbSq3moWfwx8vpvyJI1CmyB4FliX5KIk\nZwNbgenZDZJcMGvxauBgdyVK6tvQbw2q6mSSm4BfAMuA+6pqf5LbgF1VNQ38U5KrgZPAMeD6HmuW\n1LGhQQBQVduB7XPWbZs1/z3ge92WJmlUfLJQkkEgySCQhEEgCYNAEgaBJAwCSRgEkjAIJGEQSMIg\nkIRBIAmDQBIGgSQMAkkYBJIwCCRhEEjCIJCEQSAJg0ASBoEkDAJJtAiCJPcleS3JvtNsT5I7ksw0\ng6Be0X2ZkvrU5ozgJ8Cm99h+FbCumSaBu8+8LEmjNDQIquppBsOYnc4W4IEaeAY4b85YiJIWuS7u\nEawCXpm1fKhZJ2mJaDX2YVeSTDK4fGB8fLz1z42NjfVV0pJiPwzYD5Ck0/11EQSvAmtmLa9u1r1L\nVU0BUwATExPV9gB3/+qlM6nvQ+HGjRfbDwz64ciRIwtdxoLrOgy7uDSYBq5rvj3YAByvqsMd7FfS\niAw9I0jyELARWJnkEPADYDlAVd3DYLj0zcAM8Efgm30VK6kfQ4Ogqq4dsr2A73RWkaSR88lCSQaB\nJINAEgaBJAwCSRgEkjAIJGEQSMIgkIRBIAmDQBIGgSQMAkkYBJIwCCRhEEjCIJCEQSAJg0ASBoEk\nDAJJGASSMAgkYRBIokUQJLkvyWtJ9p1m+8Ykx5PsbaZt3ZcpqU9tBkH9CXAn8MB7tPl1VX2lk4ok\njdzQM4Kqeho4NoJaJC2Qru4RXJnkuSRPJrm0o31KGpE2lwbD7AEurKo3k2wGngDWzdcwySQwCTA+\nPt7BoSV14YzPCKrqRFW92cxvB5YnWXmatlNVNVFVE2NjY2d6aEkdOeMgSHJ+kjTz65t9Hj3T/Uoa\nnaGXBkkeAjYCK5McAn4ALAeoqnuAa4Abk5wE/gRsrarqrWJJnRsaBFV17ZDtdzL4elHSEuWThZIM\nAkkGgSQMAkkYBJIwCCRhEEjCIJCEQSAJg0ASBoEkDAJJGASSMAgkYRBIwiCQhEEgCYNAEgaBJAwC\nSRgEkjAIJGEQSMIgkESLIEiyJsmOJAeS7E9y8zxtkuSOJDNJnk9yRT/lSupDm9GQTwLfrao9Sc4F\ndid5qqoOzGpzFYMRkNcBXwDubv6UtAQMPSOoqsNVtaeZfwM4CKya02wL8EANPAOcl+SCzquV1Iv3\ndY8gyVrgcmDnnE2rgFdmLR/i3WEhaZFqc2kAQJJzgMeAW6rqxAc5WJJJYBJgfHy89c/duPHiD3K4\nDx37YWBsbGyhS1hwSTrdX6sgSLKcQQg8WFWPz9PkVWDNrOXVzbr/p6qmgCmAiYmJ1kOn3/2rl9o2\n/dC6cePF9gP2wyld/1Jo861BgHuBg1V1+2maTQPXNd8ebACOV9XhDuuU1KM2ZwRfBL4OvJBkb7Pu\n+8A4QFXdA2wHNgMzwB+Bb3ZfqqS+DA2CqvoN8J4XJFVVwHe6KkrSaPlkoSSDQJJBIAmDQBIGgSQM\nAkkYBJIwCCRhEEjCIJCEQSAJg0ASBoEkDAJJGASSMAgkYRBIwiCQhEEgCYNAEgaBJAwCSRgEkjAI\nJNFuyLM1SXYkOZBkf5Kb52mzMcnxJHubaVs/5UrqQ5shz04C362qPUnOBXYneaqqDsxp9+uq+kr3\nJUrq29Azgqo6XFV7mvk3gIPAqr4LkzQ67+seQZK1wOXAznk2X5nkuSRPJrm0g9okjUibSwMAkpwD\nPAbcUlUn5mzeA1xYVW8m2Qw8AaybZx+TwCTA+Pj4By5aUrdanREkWc4gBB6sqsfnbq+qE1X1ZjO/\nHVieZOU87aaqaqKqJsbGxs6wdEldafOtQYB7gYNVdftp2pzftCPJ+ma/R7ssVFJ/2lwafBH4OvBC\nkr3Nuu8D4wBVdQ9wDXBjkpPAn4CtVVU91CupB0ODoKp+A2RImzuBO7sqStJo+WShJINAkkEgCYNA\nEgaBJAwCSRgEkjAIJGEQSMIgkIRBIAmDQBIGgSQMAkkYBJIwCCRhEEjCIJCEQSAJg0ASBoEkDAJJ\nGASSMAgk0W7Is48n+W0z0vH+JP8yT5uPJXkkyUySnc2oyZKWiDZnBG8B/1BVnwU+B2xKsmFOmxuA\n31fVp4EfAT/stkxJfRoaBDXwZrO4vJnmjmu4Bbi/mX8U+NKpQVElLX5th0Vf1gyA+hrwVFXtnNNk\nFfAKQFWdBI4Dn+yyUEk9qqrWE3AesAP4zJz1+4DVs5ZfAlbO8/OTwC5g1/j4eLWxYsWKYnAG8pGe\nkix4DYthsh8G04oVK1p9foBdbT7bbYZFf0dV/SHJDmATgw//Ka8Ca4BDSc4CPgEcnefnp4ApgImJ\niWpzzGPHjr2fEiV9AG2+NRhLcl4z/9fAl4H/mtNsGvhGM38N8MsmjSQtAW3OCC4A7k+yjEFw/HtV\n/TzJbQxOO6aBe4GfJpkBjgFbe6tYUueGBkFVPQ9cPs/6bbPm/wx8rdvSJI2KTxZKMggkGQSSMAgk\nYRBIArJQX/cnOQL8rkXTlcDrPZdjDdbwYa3hwqoaG9ZowYKgrSS7qmrCGqzBGvqrwUsDSQaBpKUR\nBFMLXQDWcIo1DHzoalj09wgk9W8pnBFI6tmiCYIkm5K82LwA9dZ5tvf+gtQWNVyf5EiSvc30rY6P\nf1+S15LsO832JLmjqe/5JFd0efyWNWxMcnxWH2ybr90Z1rAmyY4kB5oX5t48T5te+6JlDb32xUhf\nHPx+3lDU1wQsY/BWo08BZwPPAZfMafOPwD3N/FbgkQWo4Xrgzh774e+BK4B9p9m+GXgSCLAB2LkA\nNWwEft7z/4cLgCua+XOB/57n36LXvmhZQ6990fzdzmnmlwM7gQ1z2nTyuVgsZwTrgZmqermq3gYe\nZvBC1Nn6fkFqmxp6VVVPM3ifw+lsAR6ogWeA85JcMOIaeldVh6tqTzP/BnCQwXsxZ+u1L1rW0Kvm\n7zaSFwcvliB45+WnjUO8u9P7fkFqmxoAvtqcij6aZE2Hx2+jbY19u7I5XX0yyaV9Hqg51b2cwW/D\n2UbWF+9RA/TcF6N6cfBiCYKl4mfA2qq6DHiKvyTxR8keBo+tfhb4N+CJvg6U5BzgMeCWqjrR13HO\noIbe+6Kq/reqPgesBtYn+UzXx4DFEwSnXn56yupm3bxt3usFqX3WUFVHq+qtZvHHwOc7PH4bbfqp\nV1V14tTpalVtB5YnWdn1cZIsZ/ABfLCqHp+nSe99MayGUfVFs/8/MHiD+KY5mzr5XCyWIHgWWJfk\noiRnM7jpMT2nTd8vSB1aw5xr0KsZXDeO0jRwXXPHfANwvKoOj7KAJOefugZNsp7B/6EuA5lm//cC\nB6vq9tM067Uv2tTQd19klC8O7uuO5we4Q7qZwZ3Zl4B/btbdBlzdzH8c+A9gBvgt8KkFqOFfgf0M\nvlHYAfxNx8d/CDgM/A+Da94bgG8D366/3EW+q6nvBWCihz4YVsNNs/rgGeBve6jh7xjcFHse2NtM\nm0fZFy1r6LUvgMuA/2xq2Ads6+tz4ZOFkhbNpYGkBWQQSDIIJBkEkjAIJGEQSMIgkIRBIAn4PxdF\n68S9kQN3AAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7f72462c84e0>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"azpbt = AZPBasicTabu(n_regions=2, random_state=2,\n",
" tabu_length=20,\n",
" repetitions_before_termination=2)\n",
"regions_dict_bt_wo = azpbt.fit(areas=areas_gdf,\n",
" data=[\"values\"],\n",
" contiguity=\"rook\")\n",
"areas_gdf[\"region\"] = pd.Series(regions_dict_bt_wo)\n",
"areas_gdf.plot(column=\"region\", cmap='tab20c')\n",
"plt.gca().invert_yaxis()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Example 2: Islands"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"islands_geometry = [\n",
" Polygon([(x, y),\n",
" (x, y+1),\n",
" (x+1, y+1),\n",
" (x+1, y)]) for y in range(3) for x in range(3)\n",
"] + [\n",
" Polygon([(x, y),\n",
" (x, y+1),\n",
" (x+1, y+1),\n",
" (x+1, y)]) for y in range(4,6) for x in range(5,8)\n",
"]"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"islands_gdf = gpd.GeoDataFrame(\n",
" {\"values\": [726.7, 623.6, 487.3,\n",
" 200.4, 245.0, 481.0,\n",
" 170.9, 225.9, 226.9] +\n",
" [100, 120, 190,\n",
" 175, 185, 210]},\n",
" geometry=islands_geometry)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAUEAAAD8CAYAAADpLRYuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAADStJREFUeJzt3X+MZeVdx/H3p7s0UAoyG2iDu4zLHw0JkihwQ600SKE0\n0BKqiYkQS2lTHY2CWzVpWo1p+KP/mab4OyNQFkuhCGzSEKSgQJGkUJiF2l2WGkSm7IouZLYCxoiw\nX/+Yu81m3XDvLHPOWXjer2Syc2eee5/PTuZ+5jzn3HNPqgpJatU7hg4gSUOyBCU1zRKU1DRLUFLT\nLEFJTbMEJTXNEpTUNEtQUtMsQUlNW9vFgx5//PG1cePGLh5akiZaWFh4sapOmGZsJyW4ceNGHnvs\nsS4eWpImSrI47ViXw5KaZglKapolKKlplqCkplmCkpo2VQkmuTDJD5I8neTzXYeSpL5MLMEka4A/\nBy4CTgUuS3Jq18EkqQ/TbAmeBTxdVc9U1avALcDHu40lSf2Y5sXS64Hn9ru9E3j/gYOSzAFzALOz\nsysOkmTF91E3ZmZmWFpaGjqG1ItVO2OkquaBeYDRaHRIV296/aVrVivOIVlz7Ca+s/uGQTN84D2f\n4k+23z9oht/56Q8NOr/Up2mWw7uAk/a7vWH8NUl6y5umBB8F3pfk5CTvBC4FvtltLEnqx8TlcFW9\nluRK4FvAGuD6qtreeTJJ6sFU+wSr6i7gro6zSFLvPGNEUtMsQUlNswQlNc0SlNQ0S1BS0yxBSU2z\nBCU1zRKU1DRLUFLTLEFJTbMEJTXNEpTUNEtQUtMsQUlNswQlNc0SlNQ0S1BS0yxBSU2zBCU1zRKU\n1DRLUFLTLEFJTbMEJTXNEpTUtIklmOT6JLuTbOsjkCT1aZotwRuACzvOIUmDmFiCVfUgsNRDFknq\nXapq8qBkI3BnVZ32BmPmgDmA2dnZMxcXF1cWJFnReHUnCXv37h06hnTIkixU1WiasWtXa9Kqmgfm\nAUaj0eRmPYjNf/3AasU5JFf8+rlcd9NDg2b4zK9+kGu2PTBohk2nnTvo/FKfPDosqWmWoKSmTfMS\nmZuB7wCnJNmZ5DPdx5KkfkzcJ1hVl/URRJKG4HJYUtMsQUlNswQlNc0SlNQ0S1BS0yxBSU2zBCU1\nzRKU1DRLUFLTLEFJTbMEJTXNEpTUNEtQUtMsQUlNswQlNc0SlNQ0S1BS0yxBSU2zBCU1zRKU1DRL\nUFLTLEFJTbMEJTVtmouvn5Tk/iRPJtmeZFMfwSSpDxMvvg68Bvx+VW1NcgywkOTeqnqy42yS1LmJ\nW4JV9XxVbR1//jKwA1jfdTBJ6sOK9gkm2QicDjzSRRhJ6luqarqBybuBbwNfqqo7DvL9OWAOYHZ2\n9szFxcWVBUlWNF7dScLevXuHjiEdsiQLVTWaZuw0+wRJcgRwO3DTwQoQoKrmgXmA0Wg0XbMe4G/+\n9N5DuduqufyqC/jq5gcHzfDpK845LDJIrZjm6HCA64AdVfXl7iNJUn+m2Sd4NnA5cF6SJ8YfH+04\nlyT1YuJyuKoeAtxhJ+ltyTNGJDXNEpTUNEtQUtMsQUlNswQlNc0SlNQ0S1BS0yxBSU2zBCU1zRKU\n1DRLUFLTLEFJTbMEJTXNEpTUNEtQUtMsQUlNswQlNc0SlNQ0S1BS0yxBSU2zBCU1zRKU1DRLUFLT\nLEFJTZtYgkmOTPLdJN9Lsj3J1X0Ek6Q+rJ1izP8A51XVK0mOAB5K8ndV9XDH2SSpcxNLsKoKeGV8\n84jxR3UZSpL6MtU+wSRrkjwB7AburapHuo0lSf3I8obelIOT44AtwFVVte2A780BcwCzs7NnLi4u\nrijIunXr2LNnz4rus9qSsJKfx9s1w8zMDEtLS4NmkN6MJAtVNZpm7DT7BH+sqn6U5H7gQmDbAd+b\nB+YBRqPRip/FPukkDWGao8MnjLcASXIUcAHwVNfBJKkP02wJnghsTrKG5dK8taru7DaWJPVjmqPD\n/wSc3kMWSeqdZ4xIapolKKlplqCkplmCkppmCUpqmiUoqWmWoKSmWYKSmmYJSmqaJSipaZagpKZZ\ngpKaZglKapolKKlplqCkplmCkppmCUpqmiUoqWmWoKSmWYKSmmYJSmqaJSipaZagpKZZgpKaNnUJ\nJlmT5PEkd3YZSJL6tJItwU3Ajq6CSNIQpirBJBuAjwHXdhtHkvo17ZbgV4DPAXs7zCJJvVs7aUCS\ni4HdVbWQ5Nw3GDcHzAHMzs6uWkBpCEmGjqCxmZkZlpaWOnv8iSUInA1ckuSjwJHAsUm+VlWf2H9Q\nVc0D8wCj0ahWPanUs81f/Mag819x9a9w45e2DJrhk3/4S9z4V/cNm+E3z+v08Scuh6vqC1W1oao2\nApcC9x1YgJL0VuXrBCU1bZrl8I9V1QPAA50kkaQBuCUoqWmWoKSmWYKSmmYJSmqaJSipaZagpKZZ\ngpKaZglKapolKKlplqCkplmCkppmCUpqmiUoqWmWoKSmWYKSmmYJSmqaJSipaZagpKZZgpKaZglK\napolKKlplqCkplmCkppmCUpq2lQXX0/yLPAy8DrwWlWNugwlSX2ZqgTHPlRVL3aWRJIG4HJYUtOm\nLcEC7kmykGSuy0CS1KdU1eRByfqq2pXkPcC9wFVV9eABY+aAOYDZ2dkzFxcXu8gr9SLJ0BE0loS9\ne/eu9D4L0x67mGqfYFXtGv+7O8kW4CzgwQPGzAPzAKPRaHKzSoe5G//s7wed/5NXfpgb/+Ifhs3w\nW+ez+dpvD5rhil/7hU4ff+JyOMnRSY7Z9znwEWBbp6kkqSfTbAm+F9gyXh6sBb5eVXd3mkqSejKx\nBKvqGeBnesgiSb3zJTKSmmYJSmqaJSipaZagpKZZgpKaZglKapolKKlplqCkplmCkppmCUpqmiUo\nqWmWoKSmWYKSmmYJSmqaJSipaZagpKZZgpKaZglKapolKKlplqCkplmCkppmCUpqmiUoqWmWoKSm\nTVWCSY5LcluSp5LsSPKBroNJUh/WTjnuGuDuqvrlJO8E3tVhJknqzcQSTPITwDnApwCq6lXg1W5j\nSVI/plkOnwy8AHw1yeNJrk1ydMe5JKkXqao3HpCMgIeBs6vqkSTXAC9V1R8dMG4OmAOYnZ09c3Fx\nsaPIUvfWrVvHnj17Bs2QhEnPzxYyzMzMsLS0tKL7JFmoqtE0Y6fZJ7gT2FlVj4xv3wZ8/sBBVTUP\nzAOMRqNhf2rSm7TSJ53euiYuh6vq34Hnkpwy/tL5wJOdppKknkx7dPgq4KbxkeFngE93F0mS+jNV\nCVbVE8BU62tJeivxjBFJTbMEJTXNEpTUNEtQUtMsQUlNm3jGyCE9aPICsNJTRo4HXlz1MGYww1tz\nfjO8uQw/VVUnTDOwkxI8FEkem/Y0FzOY4e0+vxn6y+ByWFLTLEFJTTucSnB+6ACYYR8zDD8/mGGf\nTjMcNvsEJWkIh9OWoCT1bvASTHJhkh8keTrJ/3ufwp4yXJ9kd5JtA81/UpL7kzyZZHuSTQNkODLJ\nd5N8b5zh6r4z7JdlzfhdzO8caP5nk3w/yRNJHhsow6AXN0tyyvj/v+/jpSSf7TPDOMfvjn8ftyW5\nOcmRqz7HkMvhJGuAfwYuYPnNWx8FLquqXt+vMMk5wCvAjVV1Wp9zj+c/ETixqrYmOQZYAH6xz59D\nkgBHV9UrSY4AHgI2VdXDfWXYL8vvsfyuRcdW1cUDzP8sMKqqwV4fl2Qz8I9Vde2+i5tV1Y8GyrIG\n2AW8v6p6e8v4JOtZ/j08tar+O8mtwF1VdcNqzjP0luBZwNNV9cz4Ak63AB/vO0RVPQgM9lbCVfV8\nVW0df/4ysANY33OGqqpXxjePGH/0/hcyyQbgY8C1fc99uNjv4mbXwfLFzYYqwLHzgX/pswD3sxY4\nKslalq9y+W+rPcHQJbgeeG6/2zvp+cl/uEmyETgdeOSNR3Yy95okTwC7gXv3u6RCn74CfA7YO8Dc\n+xRwT5KF8bVz+na4XdzsUuDmvietql3AHwM/BJ4H/rOq7lnteYYuQe0nybuB24HPVtVLfc9fVa9X\n1c8CG4CzkvS6ayDJxcDuqlroc96D+GBVnQFcBPz2eHdJn9YCZwB/WVWnA//FQa7r04fxUvwS4G8H\nmHuG5ZXhycBPAkcn+cRqzzN0Ce4CTtrv9obx15oz3g93O3BTVd0xZJbx0ut+4MKepz4buGS8T+4W\n4LwkX+s5w74tEKpqN7CF5d02fTrYxc3O6DnDPhcBW6vqPwaY+8PAv1bVC1X1v8AdwM+v9iRDl+Cj\nwPuSnDz+i3Mp8M2BM/VufFDiOmBHVX15oAwnJDlu/PlRLB+seqrPDFX1haraUFUbWf5duK+qVv0v\n/xtJcvT44BTjJehHgF5fNXCYXdzsMgZYCo/9EPi5JO8aP0fOZ3l/+aqa9kJLnaiq15JcCXwLWANc\nX1Xb+86R5GbgXOD4JDuBL1bVdT1GOBu4HPj+eJ8cwB9U1V09ZjgR2Dw+EvgO4NaqGuQlKgN7L7Bl\n+TnHWuDrVXX3ADkGv7jZ+I/ABcBv9D03wPg657cBW4HXgMfp4OwRzxiR1LShl8OSNChLUFLTLEFJ\nTbMEJTXNEpTUNEtQUtMsQUlNswQlNe3/AIZAYntpT0xsAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7f7246413f60>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"islands_gdf.plot(column=\"values\")\n",
"plt.gca().invert_yaxis()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Clustering"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### &nbsp;&nbsp;&nbsp;&nbsp;without initial solution"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"generate_initial_sol got a <class 'networkx.classes.graph.Graph'>\n",
"step 1\n",
"distribute_regions_among_components got a <class 'networkx.classes.graph.Graph'>\n",
"{<networkx.classes.graph.Graph object at 0x7f7242a749b0>: 2, <networkx.classes.graph.Graph object at 0x7f7242a309e8>: 1}\n",
"Init with: [{0, 3}, {1, 2, 4, 5, 6, 7, 8}]\n",
"visited []\n",
"=============================================\n",
"obj_value: 4796.3\n",
"[{0, 3}, {1, 2, 4, 5, 6, 7, 8}]\n",
"-----------------------------------\n",
"step 1\n",
" best move: move(area=1, from_idx=1, to_idx=0) objval_diff: -1378.3\n",
"step 2\n",
"[{0, 3}, {1, 2, 4, 5, 6, 7, 8}]\n",
"IMPROVING MOVE\n",
" move 1 from {1, 2, 4, 5, 6, 7, 8} to {0, 3}\n",
"visited [{frozenset({1, 2, 4, 5, 6, 7, 8}), frozenset({0, 3})}]\n",
"=============================================\n",
"obj_value: 3418.0\n",
"[{0, 1, 3}, {2, 4, 5, 6, 7, 8}]\n",
"-----------------------------------\n",
"step 1\n",
" best move: move(area=2, from_idx=1, to_idx=0) objval_diff: -424.2\n",
"step 2\n",
"[{0, 1, 3}, {2, 4, 5, 6, 7, 8}]\n",
"IMPROVING MOVE\n",
" move 2 from {2, 4, 5, 6, 7, 8} to {0, 1, 3}\n",
"visited [{frozenset({1, 2, 4, 5, 6, 7, 8}), frozenset({0, 3})}, {frozenset({2, 4, 5, 6, 7, 8}), frozenset({0, 1, 3})}]\n",
"=============================================\n",
"obj_value: 2993.8\n",
"[{0, 1, 2, 3}, {4, 5, 6, 7, 8}]\n",
"-----------------------------------\n",
"step 1\n",
" best move: move(area=3, from_idx=0, to_idx=1) objval_diff: -829.7\n",
"step 2\n",
"[{0, 1, 2, 3}, {4, 5, 6, 7, 8}]\n",
"IMPROVING MOVE\n",
" move 3 from {0, 1, 2, 3} to {4, 5, 6, 7, 8}\n",
"visited [{frozenset({1, 2, 4, 5, 6, 7, 8}), frozenset({0, 3})}, {frozenset({2, 4, 5, 6, 7, 8}), frozenset({0, 1, 3})}, {frozenset({0, 1, 2, 3}), frozenset({8, 4, 5, 6, 7})}]\n",
"=============================================\n",
"obj_value: 2164.1\n",
"[{0, 1, 2}, {3, 4, 5, 6, 7, 8}]\n",
"-----------------------------------\n",
"step 1\n",
" best move: move(area=5, from_idx=1, to_idx=0) objval_diff: -941.3\n",
"step 2\n",
"[{0, 1, 2}, {3, 4, 5, 6, 7, 8}]\n",
"IMPROVING MOVE\n",
" move 5 from {3, 4, 5, 6, 7, 8} to {0, 1, 2}\n",
"visited [{frozenset({1, 2, 4, 5, 6, 7, 8}), frozenset({0, 3})}, {frozenset({2, 4, 5, 6, 7, 8}), frozenset({0, 1, 3})}, {frozenset({0, 1, 2, 3}), frozenset({8, 4, 5, 6, 7})}, {frozenset({0, 1, 2}), frozenset({3, 4, 5, 6, 7, 8})}]\n",
"=============================================\n",
"obj_value: 1222.8\n",
"[{0, 1, 2, 5}, {3, 4, 6, 7, 8}]\n",
"-----------------------------------\n",
"step 1\n",
" best move: move(area=4, from_idx=1, to_idx=0) objval_diff: 1182.7\n",
"step 2\n",
"step 3\n",
"Tabu: deque([move(area=2, from_idx=0, to_idx=1), move(area=3, from_idx=1, to_idx=0), move(area=5, from_idx=0, to_idx=1)], maxlen=3)\n",
"step 4\n",
"[{0, 1, 2, 5}, {3, 4, 6, 7, 8}]\n",
"No improving, no aspiration ==> do the best you can\n",
" move 4 from {3, 4, 6, 7, 8} to {0, 1, 2, 5}\n",
"visited [{frozenset({1, 2, 4, 5, 6, 7, 8}), frozenset({0, 3})}, {frozenset({2, 4, 5, 6, 7, 8}), frozenset({0, 1, 3})}, {frozenset({0, 1, 2, 3}), frozenset({8, 4, 5, 6, 7})}, {frozenset({0, 1, 2}), frozenset({3, 4, 5, 6, 7, 8})}, {frozenset({8, 3, 4, 6, 7}), frozenset({0, 1, 2, 5})}]\n",
"=============================================\n",
"obj_value: 2405.5\n",
"[{0, 1, 2, 4, 5}, {3, 6, 7, 8}]\n",
"-----------------------------------\n",
"step 1\n",
" best move: move(area=0, from_idx=0, to_idx=1) objval_diff: 1012.8\n",
"step 2\n",
"step 3\n",
"Tabu: deque([move(area=3, from_idx=1, to_idx=0), move(area=5, from_idx=0, to_idx=1), move(area=4, from_idx=0, to_idx=1)], maxlen=3)\n",
"[{0, 1, 2, 4, 5}, {3, 6, 7, 8}]\n",
"ASPIRATION MOVE\n",
" move 4 from {0, 1, 2, 4, 5} to {3, 6, 7, 8}\n",
"visited [{frozenset({1, 2, 4, 5, 6, 7, 8}), frozenset({0, 3})}, {frozenset({2, 4, 5, 6, 7, 8}), frozenset({0, 1, 3})}, {frozenset({0, 1, 2, 3}), frozenset({8, 4, 5, 6, 7})}, {frozenset({0, 1, 2}), frozenset({3, 4, 5, 6, 7, 8})}, {frozenset({8, 3, 4, 6, 7}), frozenset({0, 1, 2, 5})}, {frozenset({0, 1, 2, 4, 5}), frozenset({8, 3, 6, 7})}]\n",
"=============================================\n",
"obj_value: 1222.8\n",
"[{0, 1, 2, 5}, {3, 4, 6, 7, 8}]\n",
"-----------------------------------\n",
"step 1\n",
" best move: move(area=8, from_idx=1, to_idx=0) objval_diff: 1309.4\n",
"step 2\n",
"step 3\n",
"Tabu: deque([move(area=5, from_idx=0, to_idx=1), move(area=4, from_idx=0, to_idx=1), move(area=4, from_idx=1, to_idx=0)], maxlen=3)\n",
"step 4\n",
"[{0, 1, 2, 5}, {3, 4, 6, 7, 8}]\n",
"No improving, no aspiration ==> do the best you can\n",
" move 8 from {3, 4, 6, 7, 8} to {0, 1, 2, 5}\n",
"visited [{frozenset({1, 2, 4, 5, 6, 7, 8}), frozenset({0, 3})}, {frozenset({2, 4, 5, 6, 7, 8}), frozenset({0, 1, 3})}, {frozenset({0, 1, 2, 3}), frozenset({8, 4, 5, 6, 7})}, {frozenset({0, 1, 2}), frozenset({3, 4, 5, 6, 7, 8})}, {frozenset({8, 3, 4, 6, 7}), frozenset({0, 1, 2, 5})}, {frozenset({0, 1, 2, 4, 5}), frozenset({8, 3, 6, 7})}, {frozenset({8, 3, 4, 6, 7}), frozenset({0, 1, 2, 5})}]\n",
"=============================================\n",
"obj_value: 2532.2\n",
"[{0, 1, 2, 5, 8}, {3, 4, 6, 7}]\n",
"-----------------------------------\n",
"step 1\n",
" best move: move(area=0, from_idx=0, to_idx=1) objval_diff: 976.6\n",
"step 2\n",
"step 3\n",
"Tabu: deque([move(area=4, from_idx=0, to_idx=1), move(area=4, from_idx=1, to_idx=0), move(area=8, from_idx=0, to_idx=1)], maxlen=3)\n",
"[{0, 1, 2, 5, 8}, {3, 4, 6, 7}]\n",
"ASPIRATION MOVE\n",
" move 8 from {0, 1, 2, 5, 8} to {3, 4, 6, 7}\n",
"visited [{frozenset({1, 2, 4, 5, 6, 7, 8}), frozenset({0, 3})}, {frozenset({2, 4, 5, 6, 7, 8}), frozenset({0, 1, 3})}, {frozenset({0, 1, 2, 3}), frozenset({8, 4, 5, 6, 7})}, {frozenset({0, 1, 2}), frozenset({3, 4, 5, 6, 7, 8})}, {frozenset({8, 3, 4, 6, 7}), frozenset({0, 1, 2, 5})}, {frozenset({0, 1, 2, 4, 5}), frozenset({8, 3, 6, 7})}, {frozenset({8, 3, 4, 6, 7}), frozenset({0, 1, 2, 5})}, {frozenset({0, 1, 2, 5, 8}), frozenset({3, 4, 6, 7})}]\n",
"VISITED [{0, 1, 2, 5}, {3, 4, 6, 7, 8}] FOR 2 TIMES --> TERMINATING BEFORE NEXT NON-IMPROVING MOVE\n",
"=============================================\n",
"obj_value: 1222.8\n",
"[{0, 1, 2, 5}, {3, 4, 6, 7, 8}]\n",
"-----------------------------------\n",
"step 1\n",
" best move: move(area=5, from_idx=0, to_idx=1) objval_diff: 941.3\n",
"step 2\n",
"step 3\n",
"Tabu: deque([move(area=4, from_idx=1, to_idx=0), move(area=8, from_idx=0, to_idx=1), move(area=8, from_idx=1, to_idx=0)], maxlen=3)\n",
"step 4\n",
"[{0, 1, 2, 5}, {3, 4, 6, 7, 8}]\n",
"No improving, no aspiration ==> do the best you can\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAUEAAAD8CAYAAADpLRYuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAADKNJREFUeJzt3V+IZvV9x/H3J7sGjTF1wGmwrtOVEAQRmjUPpq0hWK1B\nEzG96IVCAg2BKaEJpi2EpFBKLnpXQnJRhEFtLDGK9Q8EsUYhGis0xp3VNKtrilo37tZ2R4Y0Wkqt\n7rcXc7ZM7eKcWZ9zztrf+wWD88yemd933Zn3nHOePydVhSS16l1TDyBJUzKCkppmBCU1zQhKapoR\nlNQ0IyipaUZQUtOMoKSmGUFJTds5xBc966yzavfu3UN8aUna0urq6stVtdhn20EiuHv3bvbu3TvE\nl5akLSU52HdbD4clNc0ISmqaEZTUNCMoqWlGUFLTekUwyZVJfprk2SRfGXooSRrLlhFMsgP4S+Aq\n4ALguiQXDD2YJI2hz57gxcCzVfV8Vb0G3A58atixJGkcfR4sfQ7w4qbbh4CPvHmjJMvAMsDS0tK2\nB0my7c/RMBYWFlhfX596DGkUc3vGSFWtACsAs9nshK7edMPDz81rnBPy+Us/4AzdDFIr+hwOHwbO\n3XR7V/cxSXrH6xPBx4EPJjkvybuBa4HvDjuWJI1jy8Phqno9yReA7wE7gJur6qnBJ5OkEfQ6J1hV\n9wH3DTyLJI3OZ4xIapoRlNQ0IyipaUZQUtOMoKSmGUFJTTOCkppmBCU1zQhKapoRlNQ0IyipaUZQ\nUtOMoKSmGUFJTTOCkppmBCU1zQhKapoRlNQ0IyipaUZQUtOMoKSmGUFJTTOCkppmBCU1bcsIJrk5\nyZEk+8cYSJLG1GdP8FvAlQPPIUmT2DKCVfUIsD7CLJI0ulTV1hslu4F7q+rCt9hmGVgGWFpa+vDB\ngwe3N0iyre01nCQcPXp06jGkE5ZktapmfbbdOa9Fq2oFWAGYzWZbl/U4nljbO69xTsiexdlJMcMN\nDz836Qyfv/QDk64vjcl7hyU1zQhKalqfh8jcBvw9cH6SQ0k+N/xYkjSOLc8JVtV1YwwiSVPwcFhS\n04ygpKYZQUlNM4KSmmYEJTXNCEpqmhGU1DQjKKlpRlBS04ygpKYZQUlNM4KSmmYEJTXNCEpqmhGU\n1DQjKKlpRlBS04ygpKYZQUlNM4KSmmYEJTXNCEpqmhGU1LQ+F18/N8lDSZ5O8lSS68cYTJLGsOXF\n14HXgT+uqn1JzgBWkzxYVU8PPJskDW7LPcGqeqmq9nXvvwIcAM4ZejBJGsO2zgkm2Q3sAR4bYhhJ\nGluqqt+GyXuBHwB/XlV3H+fPl4FlgKWlpQ8fPHhwe4Mk29pew0nC0aNHpx5DOmFJVqtq1mfbPucE\nSXIKcBdw6/ECCFBVK8AKwGw261fWN3libe+JfNrc7FmcOUM3g9SKPvcOB7gJOFBVXx9+JEkaT59z\ngpcAnwEuS/Jk9/aJgeeSpFFseThcVY8CnrCT9P+SzxiR1DQjKKlpRlBS04ygpKYZQUlNM4KSmmYE\nJTXNCEpqmhGU1DQjKKlpRlBS04ygpKYZQUlNM4KSmmYEJTXNCEpqmhGU1DQjKKlpRlBS04ygpKYZ\nQUlNM4KSmmYEJTXNCEpq2pYRTHJqkh8l+XGSp5J8bYzBJGkMO3ts85/AZVX1apJTgEeT/G1V/XDg\n2SRpcFtGsKoKeLW7eUr3VkMOJUlj6XVOMMmOJE8CR4AHq+qxYceSpHH0ORymqt4APpTkTOCeJBdW\n1f7N2yRZBpYBlpaWtj3IwsICexZn2/68eUriDGz8W0it6BXBY6rq50keAq4E9r/pz1aAFYDZbLbt\nw+X19fXtfookvW197h1e7PYASXIacAXwzNCDSdIY+uwJng3ckmQHG9G8o6ruHXYsSRpHn3uH/wHY\nM8IskjQ6nzEiqWlGUFLTjKCkphlBSU0zgpKaZgQlNc0ISmqaEZTUNCMoqWlGUFLTjKCkphlBSU0z\ngpKaZgQlNc0ISmqaEZTUNCMoqWlGUFLTjKCkphlBSU0zgpKaZgQlNc0ISmqaEZTUtN4RTLIjyRNJ\n7h1yIEka03b2BK8HDgw1iCRNoVcEk+wCPgncOOw4kjSuvnuC3wC+DBwdcBZJGt3OrTZIcjVwpKpW\nk1z6FtstA8sAS0tLcxtQmkKSqUdQZ2FhgfX19cG+/pYRBC4BrknyCeBU4H1Jvl1Vn968UVWtACsA\ns9ms5j6pNLK1tbVJ119cXHSGboYhbXk4XFVfrapdVbUbuBb4/psDKEnvVD5OUFLT+hwO/4+qehh4\neJBJJGkC7glKapoRlNQ0IyipaUZQUtOMoKSmGUFJTTOCkppmBCU1zQhKapoRlNQ0IyipaUZQUtOM\noKSmGUFJTTOCkppmBCU1zQhKapoRlNQ0IyipaUZQUtOMoKSmGUFJTTOCkppmBCU1rdfF15O8ALwC\nvAG8XlWzIYeSpLH0imDnt6rq5cEmkaQJeDgsqWl9I1jAA0lWkywPOZAkjanv4fBHq+pwkl8GHkzy\nTFU9snmDLo7LAEtLS3MeUxrf4uLi1CM4A5Bk0K/fK4JVdbj775Ek9wAXA4+8aZsVYAVgNpvVnOeU\nRre2tjbp+ouLi87A8BHe8nA4yelJzjj2PvBxYP+gU0nSSPrsCb4fuKfbJd0JfKeq7h90KkkayZYR\nrKrngV8bYRZJGp0PkZHUNCMoqWlGUFLTjKCkphlBSU0zgpKaZgQlNc0ISmqaEZTUNCMoqWlGUFLT\njKCkphlBSU0zgpKaZgQlNc0ISmqaEZTUNCMoqWlGUFLTjKCkphlBSU0zgpKaZgQlNc0ISmparwgm\nOTPJnUmeSXIgyW8MPZgkjWFnz+2+CdxfVb+b5N3AewacSZJGs2UEk/wS8DHg9wCq6jXgtWHHkqRx\n9DkcPg9YA/4qyRNJbkxy+sBzSdIo+hwO7wQuAr5YVY8l+SbwFeBPN2+UZBlYBlhaWpr3nNKoFhYW\nWFxcnHSGJM7Axr/FkPpE8BBwqKoe627fyUYE/5eqWgFWAGazWc1tQmkC6+vrU4+gkWx5OFxV/wK8\nmOT87kOXA08POpUkjaTvvcNfBG7t7hl+HvjscCNJ0nh6RbCqngRmA88iSaPzGSOSmmYEJTXNCEpq\nmhGU1DQjKKlpqZr/45qTrAEHt/lpZwEvz30YZ3CGd+b6zvD2ZvjVqur1VJdBIngikuytqkkfhuMM\nznCyrO8M483g4bCkphlBSU07mSK4MvUAOMMxzjD9+uAMxww6w0lzTlCSpnAy7QlK0ugmj2CSK5P8\nNMmzSf7P6xSONMPNSY4k2T/R+ucmeSjJ00meSnL9BDOcmuRHSX7czfC1sWfYNMuO7lXM751o/ReS\n/CTJk0n2TjTDpBc3S3J+9/c/9vaLJF8ac4Zujj/svh/3J7ktyalzX2PKw+EkO4B/BK5g48VbHweu\nq6pRX68wyceAV4G/rqoLx1y7W/9s4Oyq2pfkDGAV+J0x/z8kCXB6Vb2a5BTgUeD6qvrhWDNsmuWP\n2HjVovdV1dUTrP8CMKuqyR4fl+QW4O+q6sZjFzerqp9PNMsO4DDwkara7uN/386657DxfXhBVf1H\nkjuA+6rqW/NcZ+o9wYuBZ6vq+e4CTrcDnxp7iKp6BJjspYSr6qWq2te9/wpwADhn5Bmqql7tbp7S\nvY3+GzLJLuCTwI1jr32y2HRxs5tg4+JmUwWwcznw3JgB3GQncFqSnWxc5fKf573A1BE8B3hx0+1D\njPzDf7JJshvYAzz21lsOsvaOJE8CR4AHN11SYUzfAL4MHJ1g7WMKeCDJanftnLGdbBc3uxa4bexF\nq+ow8BfAz4CXgH+rqgfmvc7UEdQmSd4L3AV8qap+Mfb6VfVGVX0I2AVcnGTUUwNJrgaOVNXqmOse\nx0er6iLgKuAPutMlYzp2cbMbqmoP8O8c57o+Y+gOxa8B/maCtRfYODI8D/gV4PQkn573OlNH8DBw\n7qbbu7qPNac7D3cXcGtV3T3lLN2h10PAlSMvfQlwTXdO7nbgsiTfHnmGY3sgVNUR4B42TtuM6XgX\nN7to5BmOuQrYV1X/OsHavw38U1WtVdV/AXcDvznvRaaO4OPAB5Oc1/3GuRb47sQzja67U+Im4EBV\nfX2iGRaTnNm9fxobd1Y9M+YMVfXVqtpVVbvZ+F74flXN/Tf/W0lyenfnFN0h6MeBUR81cJJd3Ow6\nJjgU7vwM+PUk7+l+Ri5n43z5XPW90NIgqur1JF8AvgfsAG6uqqfGniPJbcClwFlJDgF/VlU3jTjC\nJcBngJ905+QA/qSq7htxhrOBW7p7At8F3FFVkzxEZWLvB+7Z+JljJ/Cdqrp/gjkmv7hZ90vgCuD3\nx14boLvO+Z3APuB14AkGePaIzxiR1LSpD4claVJGUFLTjKCkphlBSU0zgpKaZgQlNc0ISmqaEZTU\ntP8GaFAuNfo1NOIAAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7f7242a309e8>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"azpbt = AZPBasicTabu(n_regions=3, tabu_length=3, random_state=0,\n",
" repetitions_before_termination=2)\n",
"islands_dict_bt_wo = azpbt.fit(areas=islands_gdf,\n",
" data=[\"values\"],\n",
" contiguity=\"rook\")\n",
"islands_gdf[\"region\"] = pd.Series(islands_dict_bt_wo)\n",
"islands_gdf.plot(column=\"region\", cmap='tab20c')\n",
"plt.gca().invert_yaxis()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Example 3: A tricky toy example"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Inputs"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"text/plain": [
"<matplotlib.axes._subplots.AxesSubplot at 0x7f7242982da0>"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAACSCAYAAACpHBqyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAADGVJREFUeJzt3W+MHPV9x/H3pxf+RKIpl9pSEbYxqJYa0qRATi4VUovU\nAE4e4EiJhJHamCiRpTQ0afsIWgkKeZK2UqOmpQUrsUqqCkhpVV0iI2QVojxIIT5Swt+SHK5SbCHh\nYAItEJCdbx/suFmOO+/Yu3d7e/N+SSPP/OY3e98fw312bnZ2JlWFJKkbfm7cBUiSVo6hL0kdYuhL\nUocY+pLUIYa+JHWIoS9JHWLoS1KHGPqS1CGGviR1yDvGXcBC69atq82bN4+7DEmaKI888siPqmr9\noH6rLvQ3b97M3NzcuMuQpImS5Idt+g08vZNkT5IXkjyxxPok+VKS+SSPJbmkb93OJD9opp3ty5ck\nLYc25/T/Hth2gvUfArY00y7g7wCSvBu4Gfh1YCtwc5LpYYqVJA1nYOhX1beAIyfosh34avU8BJyd\n5BzgKmBfVR2pqpeAfZz4zUOStMxGcU7/XOC5vuWDTdtS7W+TZBe9vxLYtGnTUMWc9c6zePUnrw71\nGhqtBLyDtzTY9PQ0R46c6Bh7eKvig9yq2g3sBpiZmRkqHl79yavcefM9I6lLo7Hzlms49spfjbsM\nLTD1rs/5u7LK7LzlmmX/GaO4Tv8QsLFveUPTtlS7JGlMRhH6s8DHm6t4LgVerqrngfuBK5NMNx/g\nXtm0SZLGZODpnSR3AZcD65IcpHdFzmkAVXU7sBf4MDAPvAZ8oll3JMnngf3NS91aVct7skqSdEID\nQ7+qrh2wvoDPLLFuD7Dn1EqTJI2a996RpA4x9CWpQwx9SeoQQ1+SOsTQl6QOMfQlqUMMfUnqEENf\nkjrE0JekDjH0JalDDH1J6hBDX5I6xNCXpA4x9CWpQwx9SeoQQ1+SOqRV6CfZluSZJPNJblhk/ReT\nPNpM30/y4751x/rWzY6yeEnSyWnzuMQp4DbgCuAgsD/JbFU9dbxPVf1hX//fBy7ue4nXq+qi0ZUs\nSTpVbY70twLzVXWgqt4E7ga2n6D/tcBdoyhOkjRabUL/XOC5vuWDTdvbJDkPOB94oK/5zCRzSR5K\n8pFTrlSSNLSBp3dO0g7g3qo61td2XlUdSnIB8ECSx6vq2f6NkuwCdgFs2rRpxCVJko5rc6R/CNjY\nt7yhaVvMDhac2qmqQ82/B4Bv8tbz/cf77K6qmaqaWb9+fYuSJEmnok3o7we2JDk/yen0gv1tV+Ek\n+RVgGvj3vrbpJGc08+uAy4CnFm4rSVoZA0/vVNXRJNcD9wNTwJ6qejLJrcBcVR1/A9gB3F1V1bf5\ne4A7kvyU3hvMF/qv+pEkraxW5/Srai+wd0HbTQuW/3SR7b4NvG+I+iRJI+Q3ciWpQwx9SeoQQ1+S\nOsTQl6QOMfQlqUMMfUnqEENfkjrE0JekDjH0JalDDH1J6hBDX5I6xNCXpA4x9CWpQwx9SeoQQ1+S\nOsTQl6QOMfQlqUNahX6SbUmeSTKf5IZF1l+X5HCSR5vpU33rdib5QTPtHGXxkqSTM/BxiUmmgNuA\nK4CDwP4ks4s86/aeqrp+wbbvBm4GZoACHmm2fWkk1UuSTkqbI/2twHxVHaiqN4G7ge0tX/8qYF9V\nHWmCfh+w7dRKlSQNq03onws817d8sGlb6KNJHktyb5KNJ7Ntkl1J5pLMHT58uGXpkqSTNaoPcr8O\nbK6q99M7mr/zZDauqt1VNVNVM+vXrx9RSZKkhdqE/iFgY9/yhqbt/1XVi1X1RrP4ZeADbbeVJK2c\nNqG/H9iS5PwkpwM7gNn+DknO6Vu8Gni6mb8fuDLJdJJp4MqmTZI0BgOv3qmqo0mupxfWU8Ceqnoy\nya3AXFXNAp9NcjVwFDgCXNdseyTJ5+m9cQDcWlVHlmEckqQWBoY+QFXtBfYuaLupb/5G4MYltt0D\n7BmiRknSiPiNXEnqEENfkjrE0JekDjH0JalDDH1J6hBDX5I6xNCXpA4x9CWpQwx9SeoQQ1+SOsTQ\nl6QOMfQlqUMMfUnqEENfkjrE0JekDjH0JalDWoV+km1Jnkkyn+SGRdb/UZKnkjyW5N+SnNe37liS\nR5tpduG2kqSVM/DJWUmmgNuAK4CDwP4ks1X1VF+3/wBmquq1JJ8G/hy4pln3elVdNOK6JUmnoM2R\n/lZgvqoOVNWbwN3A9v4OVfVgVb3WLD4EbBhtmZKkUWgT+ucCz/UtH2zalvJJ4L6+5TOTzCV5KMlH\nFtsgya6mz9zhw4dblCRJOhWtHozeVpLfAWaA3+prPq+qDiW5AHggyeNV9Wz/dlW1G9gNMDMzU6Os\nSZL0M22O9A8BG/uWNzRtb5Hkg8CfAFdX1RvH26vqUPPvAeCbwMVD1CtJGkKb0N8PbElyfpLTgR3A\nW67CSXIxcAe9wH+hr306yRnN/DrgMqD/A2BJ0goaeHqnqo4muR64H5gC9lTVk0luBeaqahb4C+As\n4J+SAPx3VV0NvAe4I8lP6b3BfGHBVT+SpBXU6px+Ve0F9i5ou6lv/oNLbPdt4H3DFChJGh2/kStJ\nHWLoS1KHGPqS1CGGviR1iKEvSR1i6EtShxj6ktQhhr4kdYihL0kdYuhLUocY+pLUIYa+JHWIoS9J\nHWLoS1KHGPqS1CGGviR1SKvQT7ItyTNJ5pPcsMj6M5Lc06x/OMnmvnU3Nu3PJLlqdKVLkk7WwNBP\nMgXcBnwIuBC4NsmFC7p9Enipqn4Z+CLwZ822F9J7pu57gW3A3zavJ0kagzZH+luB+ao6UFVvAncD\n2xf02Q7c2czfC/x2eg/L3Q7cXVVvVNV/AfPN60mSxqBN6J8LPNe3fLBpW7RPVR0FXgZ+seW2kqQV\n0urB6MstyS5gF8CmTZuGfr2dt1wz9GtotKbe9blxl6BF+LuyukxPTy/7z2gT+oeAjX3LG5q2xfoc\nTPIO4BeAF1tuS1XtBnYDzMzMVNviF1M11OaStKa1Ob2zH9iS5Pwkp9P7YHZ2QZ9ZYGcz/zHggeql\n7yywo7m653xgC/Cd0ZQuSTpZA4/0q+pokuuB+4EpYE9VPZnkVmCuqmaBrwD/kGQeOELvjYGm39eA\np4CjwGeq6tgyjUWSNEBW2+mQmZmZmpubG3cZkjRRkjxSVTMD+6220E9yGPjhEC+xDvjRiMoZp7Uy\nDnAsq9VaGctaGQcMN5bzqmr9oE6rLvSHlWSuzbvdardWxgGOZbVaK2NZK+OAlRmL996RpA4x9CWp\nQ9Zi6O8edwEjslbGAY5ltVorY1kr44AVGMuaO6cvSVraWjzSlyQtYSJDf5j7+682LcZyXZLDSR5t\npk+No85BkuxJ8kKSJ5ZYnyRfasb5WJJLVrrGtlqM5fIkL/ftk5tWusY2kmxM8mCSp5I8meRtN0Ca\nlP3SciyTsl/OTPKdJN9rxnLLIn2WL8OqaqImet8Kfha4ADgd+B5w4YI+vwfc3szvAO4Zd91DjOU6\n4G/GXWuLsfwmcAnwxBLrPwzcBwS4FHh43DUPMZbLgW+Mu84W4zgHuKSZ/3ng+4v8/zUR+6XlWCZl\nvwQ4q5k/DXgYuHRBn2XLsEk80h/m/v6rTZuxTISq+ha9W3AsZTvw1ep5CDg7yTkrU93JaTGWiVBV\nz1fVd5v5/wGe5u23Np+I/dJyLBOh+W/9v83iac208MPVZcuwSQz9Ye7vv9q0fd7AR5s/ve9NsnGR\n9ZNgrT1b4TeaP8/vS/LecRczSHN64GJ6R5X9Jm6/nGAsMCH7JclUkkeBF4B9VbXkfhl1hk1i6HfN\n14HNVfV+YB8/e/fX+HyX3lfefw34a+Bfx1zPCSU5C/hn4A+q6pVx1zOMAWOZmP1SVceq6iJ6t5vf\nmuRXV+pnT2Lon8z9/Vlwf//VZuBYqurFqnqjWfwy8IEVqm3UWj1bYRJU1SvH/zyvqr3AaUnWjbms\nRSU5jV5I/mNV/csiXSZmvwwayyTtl+Oq6sfAg/SeId5v2TJsEkN/mPv7rzYDx7Lg/OrV9M5lTqJZ\n4OPN1SKXAi9X1fPjLupUJPml4+dXk2yl93u06g4qmhq/AjxdVX+5RLeJ2C9txjJB+2V9krOb+XcC\nVwD/uaDbsmXYqnhc4smoIe7vv9q0HMtnk1xN73kER+hdzbPqJLmL3tUT65IcBG6m9wEVVXU7sJfe\nlSLzwGvAJ8ZT6WAtxvIx4NNJjgKvAztW6UHFZcDvAo83548B/hjYBBO3X9qMZVL2yznAnUmm6L0x\nfa2qvrFSGeY3ciWpQybx9I4k6RQZ+pLUIYa+JHWIoS9JHWLoS1KHGPqS1CGGviR1iKEvSR3yf+Pk\nGKteEXakAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7f7242a6dbe0>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"squares = [\n",
" Polygon([(x, 0),\n",
" (x, 1),\n",
" (x+1, 1),\n",
" (x+1, 0)]) for x in range(3)\n",
"]\n",
"values = [0, 1, 0]\n",
"squares_gdf = gpd.GeoDataFrame({\"values\": values},\n",
" geometry=squares)\n",
"squares_gdf.plot(column=\"values\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Clustering"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"scrolled": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"generate_initial_sol got a <class 'networkx.classes.graph.Graph'>\n",
"step 1\n",
"distribute_regions_among_components got a <class 'networkx.classes.graph.Graph'>\n",
"{<networkx.classes.graph.Graph object at 0x7f72429a2438>: 2}\n",
"Init with: [{0, 1}, {2}]\n",
"visited []\n",
"=============================================\n",
"obj_value: 1.0\n",
"[{0, 1}, {2}]\n",
"-----------------------------------\n",
"step 1\n",
" best move: move(area=1, from_idx=0, to_idx=1) objval_diff: 0.0\n",
"step 2\n",
"[{0, 1}, {2}]\n",
"IMPROVING MOVE\n",
" move 1 from {0, 1} to {2}\n",
"visited [{frozenset({2}), frozenset({0, 1})}]\n",
"=============================================\n",
"obj_value: 1.0\n",
"[{0}, {1, 2}]\n",
"-----------------------------------\n",
"step 1\n",
" best move: None objval_diff: inf\n",
"step 2\n",
"step 3\n",
"Tabu: deque([move(area=1, from_idx=1, to_idx=0)], maxlen=3)\n",
"step 4\n",
"[{0}, {1, 2}]\n",
"No improving, no aspiration ==> do the best you can\n",
"visited [{frozenset({2}), frozenset({0, 1})}, {frozenset({1, 2}), frozenset({0})}]\n",
"=============================================\n",
"obj_value: 1.0\n",
"[{0}, {1, 2}]\n",
"-----------------------------------\n",
"step 1\n",
" best move: None objval_diff: inf\n",
"step 2\n",
"step 3\n",
"Tabu: deque([move(area=1, from_idx=1, to_idx=0)], maxlen=3)\n",
"step 4\n",
"[{0}, {1, 2}]\n",
"No improving, no aspiration ==> do the best you can\n",
"visited [{frozenset({2}), frozenset({0, 1})}, {frozenset({1, 2}), frozenset({0})}, {frozenset({1, 2}), frozenset({0})}]\n",
"VISITED [{0}, {1, 2}] FOR 2 TIMES --> TERMINATING BEFORE NEXT NON-IMPROVING MOVE\n",
"=============================================\n",
"obj_value: 1.0\n",
"[{0}, {1, 2}]\n",
"-----------------------------------\n",
"step 1\n",
" best move: None objval_diff: inf\n",
"step 2\n",
"step 3\n",
"Tabu: deque([move(area=1, from_idx=1, to_idx=0)], maxlen=3)\n",
"step 4\n",
"[{0}, {1, 2}]\n",
"No improving, no aspiration ==> do the best you can\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAACSCAYAAACpHBqyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAADI5JREFUeJzt3X+MHOV9x/H3pwZDJarkEp9UBDZ2UksNaVIgJ4cKqUVK\nACd/2JFCVVO1hSqRJRo3/fEXtBK0jiKlrdRUbWmClVilURWT0Kq6REYIFVD/SCE+UkJiU5LDVYqt\nSDgcIa2gIJNv/9hxtCx33rFvfXt7835JK88888ze9/HYn517ZncnVYUkqRt+atwFSJJWjqEvSR1i\n6EtShxj6ktQhhr4kdYihL0kdYuhLUocY+pLUIYa+JHXIeeMuYNCGDRtq8+bN4y5DkibK448//oOq\nmh7Wb9WF/ubNm5mbmxt3GZI0UZJ8r02/VtM7SbYneTrJfJLbFtl+QZJ7m+2PJdnct+32pv3pJDe0\nHYAkafSGhn6SdcBdwAeAy4Gbklw+0O0jwAtV9XPAp4E/a/a9HNgFvBPYDvxd83ySpDFoc6a/DZiv\nqqNV9SpwANg50GcncE+zfB/wviRp2g9U1StV9V/AfPN8kqQxaDOnfwnwbN/6MeC9S/WpqpNJXgTe\n2rQ/OrDvJYM/IMluYDfApk2b2ta+qN5rjSRNnqmpKRYWFs7pz1gVF3Krah+wD2BmZmbZX/D/mUee\nWXZNGp1br307J06cGHcZGjA9Pe1xWWWmp4e++WbZ2kzvHAc29q1f2rQt2ifJecCbgOdb7itJWiFt\nQv8QsDXJliTr6V2YnR3oMwvc3CzfCDxUvVtyzQK7mnf3bAG2Al8fTemSpDM1dHqnmaPfAzwArAP2\nV9XhJHuBuaqaBT4PfCHJPLBA74WBpt+XgCPASeBjVfXaORqLJGmIVnP6VXUQODjQdkff8v8Bv7rE\nvp8EPrmMGiVJI+J370hShxj6ktQhhr4kdYihL0kdYuhLUocY+pLUIYa+JHWIoS9JHWLoS1KHGPqS\n1CGGviR1iKEvSR1i6EtShxj6ktQhhr4kdYihL0kd0ir0k2xP8nSS+SS3LbL9D5McSfJkkn9Nclnf\ntteSPNE8Bm+zKElaQUPvnJVkHXAXcB1wDDiUZLaqjvR1+w9gpqpeSnIr8OfArzXbXq6qK0ZctyTp\nLLQ5098GzFfV0ap6FTgA7OzvUFUPV9VLzeqjwKWjLVOSNAptQv8S4Nm+9WNN21I+Atzft35hkrkk\njyb50FnUKEkakVY3Rm8ryW8AM8Cv9DVfVlXHk7wNeCjJt6rqmYH9dgO7ATZt2jTKkiRJfdqc6R8H\nNvatX9q0vU6S9wN/DOyoqldOtVfV8ebPo8AjwJWD+1bVvqqaqaqZ6enpMxqAJKm9NqF/CNiaZEuS\n9cAu4HXvwklyJXA3vcB/rq99KskFzfIG4Bqg/wKwJGkFDZ3eqaqTSfYADwDrgP1VdTjJXmCuqmaB\nvwAuAr6cBOC/q2oH8A7g7iQ/pvcC86mBd/1IklZQqzn9qjoIHBxou6Nv+f1L7Pc14F3LKVCSNDp+\nIleSOsTQl6QOMfQlqUMMfUnqEENfkjrE0JekDjH0JalDDH1J6hBDX5I6xNCXpA4x9CWpQwx9SeoQ\nQ1+SOsTQl6QOMfQlqUMMfUnqkFahn2R7kqeTzCe5bZHttyQ5keSJ5vHRvm03J/lu87h5lMVLks7M\n0DtnJVkH3AVcBxwDDiWZXeS2h/dW1Z6Bfd8C3AnMAAU83uz7wkiqlySdkTZn+tuA+ao6WlWvAgeA\nnS2f/wbgwapaaIL+QWD72ZUqSVquNqF/CfBs3/qxpm3Qh5M8meS+JBvPcF9J0goY1YXcrwCbq+rd\n9M7m7zmTnZPsTjKXZO7EiRMjKkmSNKhN6B8HNvatX9q0/URVPV9VrzSrnwPe03bfZv99VTVTVTPT\n09Nta5cknaE2oX8I2JpkS5L1wC5gtr9Dkov7VncATzXLDwDXJ5lKMgVc37RJksZg6Lt3qupkkj30\nwnodsL+qDifZC8xV1Szw8SQ7gJPAAnBLs+9Ckk/Qe+EA2FtVC+dgHJKkFoaGPkBVHQQODrTd0bd8\nO3D7EvvuB/Yvo0ZJ0oj4iVxJ6hBDX5I6xNCXpA4x9CWpQwx9SeoQQ1+SOsTQl6QOMfQlqUMMfUnq\nEENfkjrE0JekDjH0JalDDH1J6hBDX5I6xNCXpA4x9CWpQwx9SeqQVqGfZHuSp5PMJ7ltke2fTvJE\n8/hOkh/2bXutb9vs4L6SpJUz9HaJSdYBdwHXAceAQ0lmq+rIqT5V9Qd9/X8XuLLvKV6uqitGV7Ik\n6Wy1OdPfBsxX1dGqehU4AOw8Tf+bgC+OojhJ0mi1Cf1LgGf71o81bW+Q5DJgC/BQX/OFSeaSPJrk\nQ0vst7vpM3fixImWpUuSztSoL+TuAu6rqtf62i6rqhng14G/SvL2wZ2qal9VzVTVzPT09IhLkiSd\n0ib0jwMb+9YvbdoWs4uBqZ2qOt78eRR4hNfP90uSVlCb0D8EbE2yJcl6esH+hnfhJPl5YAr49762\nqSQXNMsbgGuAI4P7SpJWxtB371TVySR7gAeAdcD+qjqcZC8wV1WnXgB2AQeqqvp2fwdwd5If03uB\n+VT/u34kSStraOgDVNVB4OBA2x0D63+yyH5fA961jPokSSPkJ3IlqUMMfUnqEENfkjrE0JekDjH0\nJalDDH1J6hBDX5I6xNCXpA4x9CWpQwx9SeoQQ1+SOsTQl6QOMfQlqUMMfUnqEENfkjrE0JekDhka\n+kn2J3kuybeX2J4kf51kPsmTSa7q23Zzku82j5tHWbgk6cy1OdP/e2D7abZ/ANjaPHYDnwFI8hbg\nTuC9wDbgziRTyylWkrQ8Q0O/qv4NWDhNl53AP1TPo8Cbk1wM3AA8WFULVfUC8CCnf/GQJJ1jo5jT\nvwR4tm/9WNO2VLskaUxa3Rj9XEuym97UEJs2bVrWc01NTXHrtW8fRVkakSRMT0+PuwwN8LisPlNT\n534GfBShfxzY2Ld+adN2HLh2oP2RxZ6gqvYB+wBmZmZqOcUsLJxuJkqSum0U0zuzwG817+K5Gnix\nqr4PPABcn2SquYB7fdMmSRqToWf6Sb5I74x9Q5Jj9N6Rcz5AVX0WOAh8EJgHXgJ+u9m2kOQTwKHm\nqfZWlafhkjRGQ0O/qm4asr2Ajy2xbT+w/+xKkySNWnqZvXokOQF8bxlPsQH4wYjKGae1Mg5wLKvV\nWhnLWhkHLG8sl1XV0Cvzqy70lyvJXFXNjLuO5Vor4wDHslqtlbGslXHAyozF796RpA4x9CWpQ9Zi\n6O8bdwEjslbGAY5ltVorY1kr44AVGMuam9OXJC1tLZ7pS5KWMJGhn2R7kqeb7/C/bZHtFyS5t9n+\nWJLNK19lOy3GckuSE0meaB4fHUedwyznvgurTYuxXJvkxb5jcsdK19hGko1JHk5yJMnhJL+3SJ+J\nOC4txzIpx+XCJF9P8s1mLH+6SJ9zl2FVNVEPYB3wDPA2YD3wTeDygT6/A3y2Wd4F3DvuupcxlluA\nvx13rS3G8svAVcC3l9j+QeB+IMDVwGPjrnkZY7kW+Oq462wxjouBq5rlnwG+s8i/r4k4Li3HMinH\nJcBFzfL5wGPA1QN9zlmGTeKZ/jZgvqqOVtWrwAF63+nfbydwT7N8H/C+JFnBGttqM5aJUGd/34VV\np8VYJkJVfb+qvtEs/w/wFG/8evOJOC4txzIRmr/r/21Wz28egxdXz1mGTWLot/me/p/0qaqTwIvA\nW1ekujPT9p4DH25+9b4vycZFtk+CtXZ/hV9qfj2/P8k7x13MMM30wJX0zir7TdxxOc1YYEKOS5J1\nSZ4AnqN3s6klj8uoM2wSQ79rvgJsrqp307v72D1D+uvc+wa9j7z/IvA3wL+MuZ7TSnIR8E/A71fV\nj8Zdz3IMGcvEHJeqeq2qrqD3lfPbkvzCSv3sSQz9pb6/f9E+Sc4D3gQ8vyLVnZmhY6mq56vqlWb1\nc8B7Vqi2UWtz3CZCVf3o1K/nVXUQOD/JhjGXtagk59MLyX+sqn9epMvEHJdhY5mk43JKVf0QeJg3\n3kr2nGXYJIb+IWBrki1J1tO7yDE70GcWuLlZvhF4qJorIqvM0LEMzK/uoDeXOYmWuu/CxEnys6fm\nV5Nso/f/aNWdVDQ1fh54qqr+coluE3Fc2oxlgo7LdJI3N8s/DVwH/OdAt3OWYavidolnoqpOJtlD\n74Ys64D9VXU4yV5grqpm6f3j+EKSeXoX5HaNr+KltRzLx5PsAE7SG8stYyv4NHKW911YjVqM5Ubg\n1iQngZeBXav0pOIa4DeBbzXzxwB/BGyCiTsubcYyKcflYuCeJOvovTB9qaq+ulIZ5idyJalDJnF6\nR5J0lgx9SeoQQ1+SOsTQl6QOMfQlqUMMfUnqEENfkjrE0JekDvl//EkSurRCDwkAAAAASUVORK5C\nYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7f724299e400>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"azpbt = AZPBasicTabu(n_regions=2, tabu_length=3, random_state=0,\n",
" repetitions_before_termination=2)\n",
"regions_dict_squares_bt = azpbt.fit(areas=squares_gdf,\n",
" data=[\"values\"],\n",
" contiguity=\"rook\")\n",
"squares_gdf[\"region\"] = pd.Series(regions_dict_squares_bt)\n",
"squares_gdf.plot(column=\"region\", cmap='tab20c')\n",
"plt.gca().invert_yaxis()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.5.2"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Display the source blob
Display the rendered blob
Raw
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment