Created
July 3, 2016 14:05
-
-
Save yohm/5c5533494c9cb9deeb05e569d6c8605d to your computer and use it in GitHub Desktop.
A MNIST tutorial code of TensorFlow.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from tensorflow.examples.tutorials.mnist import input_data | |
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) | |
import tensorflow as tf | |
x = tf.placeholder(tf.float32, [None, 784]) | |
W = tf.Variable(tf.zeros([784, 10])) | |
b = tf.Variable(tf.zeros([10])) | |
y = tf.nn.softmax(tf.matmul(x, W) + b) | |
y_ = tf.placeholder(tf.float32, [None, 10]) | |
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1])) | |
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy) | |
init = tf.initialize_all_variables() | |
sess = tf.Session() | |
sess.run(init) | |
for i in range(1000): | |
batch_xs, batch_ys = mnist.train.next_batch(100) | |
sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys}) | |
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1)) | |
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) | |
print(sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels})) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment