Last active
January 6, 2017 08:27
-
-
Save yohm/a8c14930709f42c26a4430d237364fae to your computer and use it in GitHub Desktop.
Optimize function using a differential evolution algorithm
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import random | |
class Domain(): | |
def __init__(self, minimum, maximum): | |
self.min = minimum | |
self.max = maximum | |
assert self.min < self.max | |
def scale(self, r): | |
""" | |
give [0,1] value and returns the scaled value | |
""" | |
return r * (self.max - self.min) + self.min | |
class DE_Optimizer(): | |
def __init__( self, map_func, domains, n=None, f=0.8, cr=0.9, rand_seed=None ): | |
self.n = (n or len(domains)*10) | |
self.f = f | |
self.cr = cr | |
self.random = random.Random() | |
if rand_seed: | |
self.random.seed( rand_seed ) | |
self.domains = [ Domain(d['min'],d['max']) for d in domains ] | |
self.map_func = map_func | |
self.t = 0 | |
self.best_point = None | |
self.best_f = float('inf') | |
self.generate_initial_points() | |
def generate_initial_points(self): | |
self.population = [] | |
for i in range(self.n): | |
point = [ d.scale( self.random.random() ) for d in self.domains ] | |
self.population.append( point ) | |
self.current_fs = self.map_func( self.population ) | |
def average_f(self): | |
return sum( self.current_fs ) / len( self.current_fs ) | |
def proceed(self): | |
new_positions = [] | |
for i in range(self.n): | |
new_pos = self._generate_candidate(i) | |
new_positions.append( new_pos ) | |
new_fs = self.map_func( new_positions ) | |
# selection | |
for i in range(self.n): | |
if new_fs[i] < self.current_fs[i]: | |
self.population[i] = new_positions[i] | |
self.current_fs[i] = new_fs[i] | |
if new_fs[i] < self.best_f: | |
self.best_point = new_positions[i] | |
self.best_f = new_fs[i] | |
self.t += 1 | |
def _generate_candidate(self, i): | |
""" | |
generate a candidate for population[i] | |
based on DE/rand/1/binom algorithm | |
""" | |
a = i | |
while a == i: | |
a = self.random.randrange(self.n) | |
b = i | |
while b == i or b == a: | |
b = self.random.randrange(self.n) | |
c = i | |
while c == i or c == a or c == b: | |
c = self.random.randrange(self.n) | |
new_pos = self.population[i].copy() | |
dim = len(self.domains) | |
r = self.random.randrange( dim ) | |
for d in range(dim): | |
if d == r or self.random.random() < self.cr: | |
new_pos[d] = self.population[a][d] + self.f * (self.population[b][d] - self.population[c][d]) | |
return new_pos | |
if __name__ == "__main__": | |
def main(): | |
domains = [ | |
{'min': -10.0, 'max': 10.0}, | |
{'min': -10.0, 'max': 10.0}, | |
{'min': -10.0, 'max': 10.0} | |
] | |
def f(x): | |
return (x[0]-1.0)**2+(x[1]-2.0)**2+(x[2]-3.0)**2 | |
def map_agents(points): | |
return [ f(p) for p in points ] | |
opt = DE_Optimizer(map_agents, domains, n=30, f=0.8, cr=0.9, rand_seed=1234) | |
for t in range(20): | |
opt.proceed() | |
print("t=%d %s, %f, %f" % (t, repr(opt.best_point), opt.best_f, opt.average_f() ) ) | |
main() | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment