Last active
September 1, 2024 12:07
-
-
Save yongghongg/ec89ada5709abe574ea6fe93a98c1a94 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# import required libraries | |
import pandas as pd | |
import yfinance as yf | |
import numpy as np | |
import math | |
# get stock prices | |
df = yf.download('AAPL', start='2020-01-01', threads= False) | |
# parameter setup | |
length = 20 | |
mult = 2 | |
length_KC = 20 | |
mult_KC = 1.5 | |
# calculate BB | |
m_avg = df['Close'].rolling(window=length).mean() | |
m_std = df['Close'].rolling(window=length).std(ddof=0) | |
df['upper_BB'] = m_avg + mult * m_std | |
df['lower_BB'] = m_avg - mult * m_std | |
# calculate true range | |
df['tr0'] = abs(df["High"] - df["Low"]) | |
df['tr1'] = abs(df["High"] - df["Close"].shift()) | |
df['tr2'] = abs(df["Low"] - df["Close"].shift()) | |
df['tr'] = df[['tr0', 'tr1', 'tr2']].max(axis=1) | |
# calculate KC | |
range_ma = df['tr'].rolling(window=length_KC).mean() | |
df['upper_KC'] = m_avg + range_ma * mult_KC | |
df['lower_KC'] = m_avg - range_ma * mult_KC | |
# calculate bar value | |
highest = df['High'].rolling(window = length_KC).max() | |
lowest = df['Low'].rolling(window = length_KC).min() | |
m1 = (highest + lowest)/2 | |
df['value'] = (df['Close'] - (m1 + m_avg)/2) | |
fit_y = np.array(range(0,length_KC)) | |
df['value'] = df['value'].rolling(window = length_KC).apply(lambda x: | |
np.polyfit(fit_y, x, 1)[0] * (length_KC-1) + | |
np.polyfit(fit_y, x, 1)[1], raw=True) | |
# check for 'squeeze' | |
df['squeeze_on'] = (df['lower_BB'] > df['lower_KC']) & (df['upper_BB'] < df['upper_KC']) | |
df['squeeze_off'] = (df['lower_BB'] < df['lower_KC']) & (df['upper_BB'] > df['upper_KC']) | |
# buying window for long position: | |
# 1. black cross becomes gray (the squeeze is released) | |
long_cond1 = (df['squeeze_off'][-2] == False) & (df['squeeze_off'][-1] == True) | |
# 2. bar value is positive => the bar is light green k | |
long_cond2 = df['value'][-1] > 0 | |
enter_long = long_cond1 and long_cond2 | |
# buying window for short position: | |
# 1. black cross becomes gray (the squeeze is released) | |
short_cond1 = (df['squeeze_off'][-2] == False) & (df['squeeze_off'][-1] == True) | |
# 2. bar value is negative => the bar is light red | |
short_cond2 = df['value'][-1] < 0 | |
enter_short = short_cond1 and short_cond2 |
Awesome piece of code, thank you for sharing :)
By any chance would it be possible to convert it into a screener so filter at watchlist of stocks determining if each one is Squeeze on or off.
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
df['squeeze_on'] Is calculated but in this snip remain unused till the last line