Skip to content

Instantly share code, notes, and snippets.

@yongghongg
Last active October 19, 2024 06:01
Show Gist options
  • Save yongghongg/ed724f7fcf6584932fbcc8e62e177530 to your computer and use it in GitHub Desktop.
Save yongghongg/ed724f7fcf6584932fbcc8e62e177530 to your computer and use it in GitHub Desktop.
Build your own technical analysis stock screener using Python
#import required modules
from bs4 import BeautifulSoup
import ast
import pandas as pd
import re
import requests
from datetime import datetime
def get_stock_price(ticker):
# pass a ticker name to i3investor website url
url = "https://klse.i3investor.com/servlets/stk/chart/{}.jsp". format(ticker)
# get response from the site and extract the price data
response = requests.get(url, headers={'User-Agent':'test'})
soup = BeautifulSoup(response.content, "html.parser")
script = soup.find_all('script')
data_tag = script[19].contents[0] #changed to 19 from 20
chart_data = ast.literal_eval(re.findall('\[(.*)\]', data_tag.split(';')[0])[0])
# tabulate the price data into a dataframe
chart_df = pd.DataFrame(chart_data, columns = ['Date', 'Open', 'High', 'Low', 'Close', 'Volume'])
# convert timestamp into readable date
chart_df['Date'] = chart_df['Date'].apply(lambda x: \
datetime.utcfromtimestamp(int(x)/1000).strftime('%Y-%m-%d'))
return chart_df
def add_EMA(price, day):
return price.ewm(span=day).mean()
def get_stock_list():
# this is the website we're going to scrape from
url = "https://www.malaysiastock.biz/Stock-Screener.aspx"
response = requests.get(url, headers={'User-Agent':'test'})
soup = BeautifulSoup(response.content, "html.parser")
table = soup.find(id = "MainContent2_tbAllStock")
# return the result in a list
return [stock.getText() for stock in table.find_all('a')]
# function to check for EMA crossing
def check_EMA_crossing(df):
# condition 1: EMA18 is higher than EMA50 at the last trading day
cond_1 = df.iloc[-1]['EMA18'] > df.iloc[-1]['EMA50']
# condition 2: EMA18 is lower than EMA50 the previous day
cond_2 = df.iloc[-2]['EMA18'] < df.iloc[-2]['EMA50']
# condition 3: to filter out stocks with less than 50 candles
cond_3 = len(df.index) > 50
# will return True if all 3 conditions are met
return (cond_1 and cond_2 and cond_3)
# main program
if __name__ == '__main__':
# a list to store the screened results
screened_list = []
# get the full stock list
stock_list = get_stock_list()
for each_stock in stock_list:
# Step 1: get stock price for each stock
price_chart_df = get_stock_price(each_stock)
# Step 2: add technical indicators (in this case EMA)
price_chart_df['EMA18']=add_EMA(price_chart_df['Close'],18)
price_chart_df['EMA50']=add_EMA(price_chart_df['Close'],50)
price_chart_df['EMA100']=add_EMA(price_chart_df['Close'],100)
# if all 3 conditions are met, add stock into screened list
if check_EMA_crossing(price_chart_df):
screened_list.append(each_stock)
print(screened_list)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment