Skip to content

Instantly share code, notes, and snippets.

@yongjun823
Created July 3, 2019 08:37
Show Gist options
  • Save yongjun823/82aba27b85c94246918f6d3981a22599 to your computer and use it in GitHub Desktop.
Save yongjun823/82aba27b85c94246918f6d3981a22599 to your computer and use it in GitHub Desktop.
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Flatten, Dense, Conv2D
from tensorflow.keras.preprocessing.image import ImageDataGenerator
train_datagen = ImageDataGenerator(
rescale=1./255,
validation_split=0.15
)
train_generator = train_datagen.flow_from_directory(
'../../Downloads/sss',
target_size=(24, 24),
batch_size=2,
class_mode='binary')
for r in train_generator:
print(r[0].shape, r[1].shape)
print(r[0].dtype, r[1].dtype)
break
data_generator = tf.data.Dataset.from_generator(lambda: train_generator,
output_types=(tf.float32, tf.float32),
output_shapes=((2, 24, 24, 3), (2, )))
model = Sequential([
Conv2D(10, (3, 3), activation='relu', input_shape=(24, 24, 3)),
Flatten(),
Dense(1, activation='sigmoid')
])
model.summary()
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
model.fit(data_generator, epochs=10, steps_per_epoch=1)
# model.fit_generator(
# train_generator,
# steps_per_epoch=10,
# epochs=5
# )
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment