Created
March 31, 2020 02:05
-
-
Save yongkangc/86cc0f9d16bfe53ada84c0daa51afe09 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#confusionmatrix | |
from sklearn.metrics import confusion_matrix | |
import numpy as np | |
def print_confusion_matrix(confusion_matrix, class_names, figsize = (10,7), fontsize=14, normalize=False): | |
if normalize: | |
confusion_matrix = confusion_matrix.astype('float') / confusion_matrix.sum(axis=1)[:, np.newaxis] | |
fmt = '.2f' | |
title = 'Normalized Confusion Matrix' | |
else: | |
fmt = 'd' | |
title = 'Confusion Matrix' | |
df_cm = pd.DataFrame(confusion_matrix, index=class_names, columns=class_names) | |
fig = plt.figure(figsize=figsize) | |
heatmap = sns.heatmap(df_cm, annot=True, fmt=fmt) | |
heatmap.yaxis.set_ticklabels(heatmap.yaxis.get_ticklabels(), rotation=0, ha='right', fontsize=fontsize) | |
heatmap.xaxis.set_ticklabels(heatmap.yaxis.get_ticklabels(), rotation=45, ha='right', fontsize=fontsize) | |
heatmap.set_ylabel('True label') | |
heatmap.set_xlabel('Predicted label') | |
heatmap.set_title(title) | |
return fig | |
conf_mat = confusion_matrix(y_test, rf.predict(x_test)) | |
# readable labels | |
labels = [cat_map[encoder_mapping[label]] for label in sorted(encoder_mapping.keys())] | |
ax = print_confusion_matrix(conf_mat, labels, normalize=True) | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment