Created
October 31, 2024 21:27
-
-
Save youkaichao/dcd04fcc42b276f5480c43b3690e51ea to your computer and use it in GitHub Desktop.
custom op overhead (no mutation)
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import os | |
from dataclasses import dataclass | |
from typing import Optional, Tuple | |
import torch | |
from torch import nn | |
def silly_attention(q: torch.Tensor, k: torch.Tensor, v: torch.Tensor) -> torch.Tensor: | |
out = q.clone() | |
out += k | |
out += v | |
return out | |
use_custom_op = False | |
if use_custom_op: | |
silly_attention = torch.library.custom_op("silly::attention", mutates_args=[])(silly_attention) | |
@silly_attention.register_fake | |
def _(q: torch.Tensor, k: torch.Tensor, v: torch.Tensor) -> torch.Tensor: | |
return torch.empty_like(q) | |
@dataclass | |
class LlamaConfig: | |
hidden_size: int = 128 | |
mlp_size: int = 256 | |
vocab_size: int = 128 | |
num_layers: int = 2 | |
class LlamaMLP(nn.Module): | |
def __init__(self, config: LlamaConfig) -> None: | |
super().__init__() | |
self.gate_up_projection = nn.Linear( | |
in_features=config.hidden_size, | |
out_features=config.mlp_size * 2, | |
bias=False, | |
) | |
self.down_projection = nn.Linear( | |
in_features=config.mlp_size, | |
out_features=config.hidden_size, | |
bias=False, | |
) | |
self.gate_up_projection.weight.data.fill_(0.0) | |
self.down_projection.weight.data.fill_(0.0) | |
def forward(self, x): | |
x = self.gate_up_projection(x) | |
x = x[:, :x.size(1) // 2] * torch.nn.functional.relu( | |
x[:, x.size(1) // 2:]) | |
x = self.down_projection(x) | |
return x | |
class LlamaAttention(nn.Module): | |
def __init__(self, config: LlamaConfig) -> None: | |
super().__init__() | |
self.qkv_projection = nn.Linear( | |
in_features=config.hidden_size, | |
out_features=config.hidden_size * 3, | |
) | |
self.output_projection = nn.Linear( | |
in_features=config.hidden_size, | |
out_features=config.hidden_size, | |
) | |
self.qkv_projection.weight.data.fill_(0.0) | |
self.output_projection.weight.data.fill_(0.0) | |
def forward( | |
self, | |
positions: torch.Tensor, | |
hidden_states: torch.Tensor, | |
) -> torch.Tensor: | |
qkv = self.qkv_projection(hidden_states) | |
hidden_size = qkv.size(-1) // 3 | |
q, k, v = qkv.split([hidden_size, hidden_size, hidden_size], dim=-1) | |
q = q + positions.unsqueeze(1) | |
k = k + positions.unsqueeze(1) | |
if use_custom_op: | |
attn_output = torch.ops.silly.attention(q, k, v) | |
else: | |
attn_output = silly_attention(q, k, v) | |
output = self.output_projection(attn_output) | |
return output | |
class LlamaDecoderLayer(nn.Module): | |
def __init__(self, config: LlamaConfig) -> None: | |
super().__init__() | |
self.self_attention = LlamaAttention(config) | |
self.mlp = LlamaMLP(config) | |
def forward( | |
self, | |
positions: torch.Tensor, | |
hidden_states: torch.Tensor, | |
residual: Optional[torch.Tensor], | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
if residual is None: | |
residual = hidden_states | |
hidden_states = hidden_states / 2 | |
else: | |
hidden_states = hidden_states + residual | |
residual = hidden_states | |
hidden_states = hidden_states / 2 | |
hidden_states = self.self_attention(positions=positions, | |
hidden_states=hidden_states) | |
hidden_states = hidden_states + residual | |
residual = hidden_states | |
hidden_states = hidden_states / 2 | |
hidden_states = self.mlp(hidden_states) | |
return hidden_states, residual | |
class LlamaModel(nn.Module): | |
def __init__(self, config: LlamaConfig) -> None: | |
super().__init__() | |
self.embedding_tokens = nn.Embedding( | |
num_embeddings=config.vocab_size, | |
embedding_dim=config.hidden_size, | |
) | |
self.layers = nn.ModuleList( | |
[LlamaDecoderLayer(config) for _ in range(config.num_layers)]) | |
self.embedding_tokens.weight.data.fill_(0.0) | |
def forward( | |
self, | |
input_ids: Optional[torch.Tensor], | |
positions: torch.Tensor, | |
) -> torch.Tensor: | |
hidden_states = self.embedding_tokens(input_ids) | |
residual = None | |
for layer in self.layers: | |
hidden_states, residual = layer(positions, hidden_states, residual) | |
return hidden_states | |
@torch.inference_mode | |
def benchmark(): | |
from triton.testing import do_bench | |
cls = LlamaModel | |
# similar to llama 3.1-8B | |
llama_config = LlamaConfig(hidden_size=4096, | |
mlp_size=14336, | |
vocab_size=128 * 1024, | |
num_layers=32) | |
# a tiny model to measure the overhead | |
# of piecewise cudagraph | |
llama_config = LlamaConfig(hidden_size=40, | |
mlp_size=80, | |
vocab_size=128, | |
num_layers=2) | |
cudagraph_sizes = [1, 2, 4] + [i * 8 for i in range(1, 33)] | |
eager_time = {} | |
full_cudagraph_time = {} | |
pool = torch.cuda.graph_pool_handle() | |
model = cls(llama_config).eval().cuda().to(torch.bfloat16) | |
B = 256 # max batch size | |
input_ids = torch.randint(0, llama_config.vocab_size, (B, )).cuda() | |
positions = torch.arange(B).cuda().to(torch.bfloat16) | |
graphs = {} | |
model(input_ids, positions) | |
for b in cudagraph_sizes[::-1]: | |
graph = torch.cuda.CUDAGraph() | |
with torch.cuda.graph(graph, pool=pool): | |
output = model(input_ids[:b], positions[:b]) | |
graphs[b] = (graph, output) | |
for b in cudagraph_sizes: | |
runtime = do_bench(lambda: graphs[b][0].replay()) # noqa | |
eager_runtime = do_bench( | |
lambda: model(input_ids[:b], positions[:b])) # noqa | |
full_cudagraph_time[b] = runtime | |
eager_time[b] = eager_runtime | |
# print in tabular format | |
print("batch size\teager mode\tfull cudagraph") | |
for b in cudagraph_sizes: | |
print((f"{b}\t{eager_time[b]:.3f}\t{full_cudagraph_time[b]:.3f}")) | |
if __name__ == "__main__": | |
benchmark() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
I'm on a
AMD EPYC 7763 64-Core Processor
torch 2.5.1, pytorch 3.12.7
run with
use_custom_op = True
run with
use_custom_op = False