Created
January 3, 2025 03:05
-
-
Save youkaichao/ee42782c91e444851965509236beea62 to your computer and use it in GitHub Desktop.
cmp shm broadcast and pytorch broadcast object list
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch.distributed as dist | |
import torch | |
import time | |
dist.init_process_group(backend="nccl") | |
rank = dist.get_rank() | |
torch.cuda.set_device(rank) | |
N_warmup = 10 | |
N_measure = 100 | |
if rank == 0: | |
rpc_method = "a" | |
for i in range(N_warmup): | |
dist.broadcast_object_list([rpc_method], src=0) | |
send_latencies = [] | |
for i in range(N_measure): | |
t0 = time.perf_counter_ns() | |
dist.broadcast_object_list([rpc_method], src=0) | |
t1 = time.perf_counter_ns() | |
send_latencies.append(t1 - t0) | |
median = sorted(send_latencies)[len(send_latencies) // 2] | |
print(f"Median latency: {median / 1e3:.3f} us") | |
else: | |
for i in range(N_warmup + N_measure): | |
recv_data = [None] | |
dist.broadcast_object_list(recv_data, src=0) | |
rpc_method = recv_data[0] | |
assert rpc_method == "a" | |
# torchrun --nproc-per-node=8 test_pytorch.py | |
# Median latency: 121.143 us |
Author
youkaichao
commented
Jan 3, 2025
measure both pytorch send and recv latency:
import torch.distributed as dist
import torch
import time
dist.init_process_group(backend="nccl")
rank = dist.get_rank()
torch.cuda.set_device(rank)
N_warmup = 10
N_measure = 100
if rank == 0:
rpc_method = "a"
for i in range(N_warmup):
dist.broadcast_object_list([rpc_method, 0], src=0)
dist.barrier()
send_latencies = []
for i in range(N_measure):
t0 = time.perf_counter_ns()
dist.broadcast_object_list([rpc_method, t0], src=0)
t1 = time.perf_counter_ns()
send_latencies.append(t1 - t0)
dist.barrier()
median = sorted(send_latencies)[len(send_latencies) // 2]
print(f"Median send latency: {median / 1e3:.3f} us")
else:
for i in range(N_warmup):
dist.broadcast_object_list([None, None], src=0)
dist.barrier()
recv_latencies = []
for i in range(N_measure):
recv_data = [None, None]
dist.broadcast_object_list(recv_data, src=0)
recv_time = time.perf_counter_ns()
send_time = recv_data[1]
rpc_method = recv_data[0]
assert rpc_method == "a"
recv_latencies.append(recv_time - send_time)
dist.barrier()
median = sorted(recv_latencies)[len(recv_latencies) // 2]
print(f"Median recv latency for rank {dist.get_rank()}: {median / 1e3:.3f} us")
# torchrun --nproc-per-node=8 test_pytorch.py
# Median send latency: 121.798 us
# Median recv latency for rank 6: 243.355 us
# Median recv latency for rank 3: 243.287 us
# Median recv latency for rank 7: 256.957 us
# Median recv latency for rank 5: 250.861 us
# Median recv latency for rank 4: 252.541 us
# Median recv latency for rank 1: 244.200 us
# Median recv latency for rank 2: 241.544 us
measure both shm broadcast send and recv latency:
import torch.distributed as dist
import torch
import time
dist.init_process_group(backend="gloo")
rank = dist.get_rank()
from vllm.distributed.device_communicators.shm_broadcast import MessageQueue
mq = MessageQueue.create_from_process_group(torch.distributed.distributed_c10d._get_default_group(), 1 << 20, 200, 0)
N_warmup = 10
N_measure = 100
if rank == 0:
rpc_method = "a"
for i in range(N_warmup):
mq.enqueue([rpc_method, 0])
dist.barrier()
send_latencies = []
for i in range(N_measure):
t0 = time.perf_counter_ns()
mq.enqueue([rpc_method, t0])
t1 = time.perf_counter_ns()
send_latencies.append(t1 - t0)
dist.barrier()
median = sorted(send_latencies)[len(send_latencies) // 2]
print(f"Median send latency: {median / 1e3:.3f} us")
else:
for i in range(N_warmup):
recv_data = mq.dequeue()
dist.barrier()
recv_latencies = []
for i in range(N_measure):
recv_data = mq.dequeue()
recv_time = time.perf_counter_ns()
send_time = recv_data[1]
rpc_method = recv_data[0]
assert rpc_method == "a"
recv_latencies.append(recv_time - send_time)
dist.barrier()
median = sorted(recv_latencies)[len(recv_latencies) // 2]
print(f"Median recv latency for rank {dist.get_rank()}: {median / 1e3:.3f} us")
# save as test_shm_broadcast.py
# pip install -U vllm
# torchrun --nproc-per-node=8 test_shm_broadcast.py
# Median send latency: 10.763 us
# Median recv latency for rank 7: 20.339 us
# Median recv latency for rank 5: 19.841 us
# Median recv latency for rank 3: 20.568 us
# Median recv latency for rank 4: 20.232 us
# Median recv latency for rank 1: 20.146 us
# Median recv latency for rank 6: 20.858 us
# Median recv latency for rank 2: 21.058 us
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment