Created
October 25, 2023 17:19
-
-
Save youngsoul/eb92591ee9128f680e7d08c9bcefc7e7 to your computer and use it in GitHub Desktop.
read libsvm files and create csv files from them
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from typing import Tuple | |
import pandas as pd | |
def read_libsvm_file(filename) -> Tuple[list[dict], set]: | |
data = [] # array of json records | |
unique_columns = set() | |
with open(filename, "r") as f: | |
while True: | |
line = f.readline() | |
if not line: | |
break | |
data_values = line.split(" ") | |
json_record = {} | |
for i, value in enumerate(data_values): | |
if i == 0: | |
json_record['target'] = data_values[0] | |
else: | |
if value and ":" in value: | |
k, v = value.split(":") | |
json_record[k] = str(v).strip() | |
unique_columns.add(f"{k}") | |
data.append(json_record) | |
return data, unique_columns | |
def main(input_file: str, output_file: str | None = None) -> pd.DataFrame: | |
print("#" * 30) | |
print(f"Process input file: {input_file}") | |
# rows - all of the rows in the libsvm, where each row is a json/dict of the hashvalue column, and the value | |
# unique_columns - is a set of all of the unique hashvalue columns found | |
rows, unique_columns = read_libsvm_file(input_file) | |
# print(unique_columns) | |
expanded_data = [] # array of json records with all unique columns in each row | |
for row in rows: | |
# find the sparse row column has values that are in the complete unique set | |
# then set any from the unique set outside the intersection to zero, those | |
# in the unique set, set to the value from the row | |
intersection = unique_columns.intersection(row.keys()) | |
expanded_data_row = {} | |
expanded_data_row['target'] = row['target'] | |
for unique_column in list(unique_columns): | |
if unique_column in intersection: | |
expanded_data_row[unique_column] = float(row[unique_column]) | |
else: | |
expanded_data_row[unique_column] = 0.0 | |
expanded_data.append(expanded_data_row) | |
df = pd.DataFrame(expanded_data) | |
if output_file: | |
df.to_csv(output_file, header=True, index=False) | |
return df | |
if __name__ == '__main__': | |
base_dir = "./libsvmfiles/timebased" | |
df_test = main(f"{base_dir}/test.libsvm", f"{base_dir}/csv/test.csv") | |
df_val = main(f"{base_dir}/validation.libsvm", f"{base_dir}/csv/val.csv") | |
df_train = main(f"{base_dir}/train.libsvm", f"{base_dir}/csv/train.csv") | |
df_all = pd.concat([df_train, df_val, df_test], ignore_index=True) | |
df_all.fillna(value=0.0) | |
df_all.to_csv(f"{base_dir}/csv/all_data.csv", header=True, index=False) | |
df_train_val = pd.concat([df_train, df_val], ignore_index=True) | |
df_train_val.fillna(value=0.0) | |
df_train_val.to_csv(f"{base_dir}/csv/train_val.csv", header=True, index=False) | |
print(f"Test DF shape: {df_test.shape}") | |
print(f"Validation DF shape: {df_val.shape}") | |
print(f"Train DF shape: {df_train.shape}") | |
print(f"Train Val DF shape: {df_train_val.shape}") | |
print(f"All data shape: {df_all.shape}") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment