Created
August 10, 2019 12:37
-
-
Save ypeleg/a4206cda36c6b5cab6d93a128b9739cc to your computer and use it in GitHub Desktop.
StratifiedGroupedKFold
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import random | |
import numpy as np | |
import pandas as pd | |
from collections import Counter, defaultdict | |
def stratified_group_k_fold(X, y, groups, k, seed=None): | |
labels_num = np.max(y) + 1 | |
y_counts_per_group = defaultdict(lambda: np.zeros(labels_num)) | |
y_distr = Counter() | |
for label, g in zip(y, groups): | |
y_counts_per_group[g][label] += 1 | |
y_distr[label] += 1 | |
y_counts_per_fold = defaultdict(lambda: np.zeros(labels_num)) | |
groups_per_fold = defaultdict(set) | |
def eval_y_counts_per_fold(y_counts, fold): | |
y_counts_per_fold[fold] += y_counts | |
std_per_label = [] | |
for label in range(labels_num): | |
label_std = np.std([y_counts_per_fold[i][label] / y_distr[label] for i in range(k)]) | |
std_per_label.append(label_std) | |
y_counts_per_fold[fold] -= y_counts | |
return np.mean(std_per_label) | |
groups_and_y_counts = list(y_counts_per_group.items()) | |
random.Random(seed).shuffle(groups_and_y_counts) | |
for g, y_counts in sorted(groups_and_y_counts, key=lambda x: -np.std(x[1])): | |
best_fold = None | |
min_eval = None | |
for i in range(k): | |
fold_eval = eval_y_counts_per_fold(y_counts, i) | |
if min_eval is None or fold_eval < min_eval: | |
min_eval = fold_eval | |
best_fold = i | |
y_counts_per_fold[best_fold] += y_counts | |
groups_per_fold[best_fold].add(g) | |
all_groups = set(groups) | |
for i in range(k): | |
train_groups = all_groups - groups_per_fold[i] | |
test_groups = groups_per_fold[i] | |
train_indices = [i for i, g in enumerate(groups) if g in train_groups] | |
test_indices = [i for i, g in enumerate(groups) if g in test_groups] | |
yield train_indices, test_indices | |
x_train = pd.read_csv('../input/train/train.csv') | |
y_train = train.Target.values | |
groups = np.array(x_train.ID.values) | |
for fold_ind, (dev_ind, val_ind) in enumerate(stratified_group_k_fold(train_x, train_y, groups, k=5)): | |
y_train, y_test = y[train_idx], y[test_idx] | |
x_train, x_test = groups[train_idx], groups[test_idx] | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment