Created
July 31, 2023 16:30
-
-
Save ypeleg/f1eb7ca4cdbc7dac6f330cba9de6f913 to your computer and use it in GitHub Desktop.
RLAIF
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
model = AutoModelForCausalLM.from_pretrained('NousResearch/Nous-Hermes-Llama2-13b', device_map = 'auto') | |
tokenizer = AutoTokenizer.from_pretrained('NousResearch/Nous-Hermes-Llama2-13b') | |
model.eval() | |
print(tokenizer('yes')) # [1, 4871] | |
print(tokenizer.decode(4874)) # yes | |
print(tokenizer('no')) # [1, 694] | |
print(tokenizer.decode(694)) # no | |
question = 'Do pineapples belong on pizza? \nAnswer:' | |
outputs = model.generate(tokenizer([question], return_tensors = "pt").input_ids.to('cuda'), | |
return_dict_in_generate = True, output_scores = True, max_new_tokens = 1) | |
p_yes = torch.exp(outputs.scores[0][:, 4874]).cpu().numpy()[0] | |
p_no = torch.exp(outputs.scores[0][:, 694]).cpu().numpy()[0] | |
print('Prob yes:', p_yes) # p_yes: 490.5 (the probs are not normalized) | |
print('Prob no:', p_no) # p_no: 424.5 | |
reward = (p_yes / (p_yes + p_no)) | |
print('Reward:', reward) # reward: 0.536 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment