Last active
April 6, 2020 03:18
-
-
Save yptheangel/8153c3daf28d3167a53eb4131a4b50e8 to your computer and use it in GitHub Desktop.
Flatten in Eclipse Deeplearning4j, For example to flatten Rank 4 tensor to Rank 2 (batch size, nIn) input to the Dense Layer.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// Take note this config is just an example | |
// Take note that my input is a Rank 4 tensor, a DataSetIterator that uses ImageRecordReader | |
// Method 1: using .setInputTypes(InputType.convolutional(height,width,channels)) | |
ComputationGraphConfiguration config = new NeuralNetConfiguration.Builder() | |
.seed(seed) | |
.updater(new RmsProp(1e-3)) | |
.weightInit(WeightInit.XAVIER) | |
.l2(1e-4) | |
.graphBuilder() | |
.addInputs("input") | |
.layer("vae",new VariationalAutoencoder.Builder() | |
.activation(Activation.LEAKYRELU) | |
.encoderLayerSizes(20,10) //1 encoder layer with 20 nodes | |
.decoderLayerSizes(5,15) //2 decoder layers with 15 and 5 nodes respectively | |
.pzxActivationFunction(Activation.IDENTITY) //p(z|data) activation function | |
.reconstructionDistribution(new BernoulliReconstructionDistribution(Activation.SIGMOID.getActivationFunction())) //Bernoulli distribution for p(data|z) (binary or 0 to 1 data only) | |
.nIn(width*height*channels) | |
.nOut(2) //Size of the latent variable space: p(z|x). 2 dimensions here for plotting, use more in general | |
.build(),"input") | |
.setInputTypes(InputType.convolutional(height,width,channels)) | |
.setOutputs("vae") | |
.build(); | |
// Method 2: add a CnnToFeedForwardPreprocessor as a vertex, your network must be a ComputationGraph | |
// .addVertex("flatten",new PreprocessorVertex(new CnnToFeedForwardPreProcessor(height,width,channels)),"input") | |
ComputationGraphConfiguration config = new NeuralNetConfiguration.Builder() | |
.seed(seed) | |
.updater(new RmsProp(1e-3)) | |
.weightInit(WeightInit.XAVIER) | |
.l2(1e-4) | |
.graphBuilder() | |
.addInputs("input") | |
.addVertex("flatten",new PreprocessorVertex(new CnnToFeedForwardPreProcessor(height,width,channels)),"input") | |
.layer("vae",new VariationalAutoencoder.Builder() | |
.activation(Activation.LEAKYRELU) | |
.encoderLayerSizes(20,10) //1 encoder layer with 20 nodes | |
.decoderLayerSizes(5,15) //2 decoder layers with 15 and 5 nodes respectively | |
.pzxActivationFunction(Activation.IDENTITY) //p(z|data) activation function | |
.reconstructionDistribution(new BernoulliReconstructionDistribution(Activation.SIGMOID.getActivationFunction())) //Bernoulli distribution for p(data|z) (binary or 0 to 1 data only) | |
.nIn(width*height*channels) | |
.nOut(2) //Size of the latent variable space: p(z|x). 2 dimensions here for plotting, use more in general | |
.build(),"flatten") | |
.setInputTypes(InputType.convolutional(height,width,channels)) | |
.setOutputs("vae") | |
.build(); | |
// Reference: https://deeplearning4j.konduit.ai/getting-started/cheat-sheet#input-pre-processors | |
// I have tried ReshapeVertex but it wont work if batch size is more than 1 because the new shape requires a dynamic size. |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment