Created
September 23, 2016 17:34
-
-
Save ypwhs/64b3c8c80157d502987bc59d5e6a1ac3 to your computer and use it in GitHub Desktop.
tflearn vs tensorflow
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Extracting mnist/train-images-idx3-ubyte.gz\n" | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"/usr/local/Cellar/python/2.7.12/Frameworks/Python.framework/Versions/2.7/lib/python2.7/gzip.py:275: VisibleDeprecationWarning: converting an array with ndim > 0 to an index will result in an error in the future\n", | |
" chunk = self.extrabuf[offset: offset + size]\n", | |
"/usr/local/lib/python2.7/site-packages/tflearn/datasets/mnist.py:52: VisibleDeprecationWarning: converting an array with ndim > 0 to an index will result in an error in the future\n", | |
" data = data.reshape(num_images, rows, cols, 1)\n" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Extracting mnist/train-labels-idx1-ubyte.gz\n", | |
"Extracting mnist/t10k-images-idx3-ubyte.gz\n", | |
"Extracting mnist/t10k-labels-idx1-ubyte.gz\n" | |
] | |
} | |
], | |
"source": [ | |
"import tflearn\n", | |
"import tflearn.datasets.mnist as mnist\n", | |
"X, Y, testX, testY = mnist.load_data(one_hot=True)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Training Step: 6880 | total loss: \u001b[1m\u001b[32m0.29894\u001b[0m\u001b[0m\n", | |
"| RMSProp | epoch: 016 | loss: 0.29894 - acc: 0.9752 | val_loss: 0.06902 - val_acc: 0.9801 -- iter: 55000/55000\n", | |
"Training Step: 6880 | total loss: \u001b[1m\u001b[32m0.29894\u001b[0m\u001b[0m\n", | |
"| RMSProp | epoch: 016 | loss: 0.29894 - acc: 0.9752 | val_loss: 0.06902 - val_acc: 0.9801 -- iter: 55000/55000\n", | |
"--\n" | |
] | |
} | |
], | |
"source": [ | |
"input_layer = tflearn.input_data(shape=[None, 784])\n", | |
"dense1 = tflearn.fully_connected(input_layer, 512, activation='tanh')\n", | |
"dropout1 = tflearn.dropout(dense1, 0.8)\n", | |
"dense2 = tflearn.fully_connected(dropout1, 512, activation='tanh')\n", | |
"dropout2 = tflearn.dropout(dense2, 0.8)\n", | |
"softmax = tflearn.fully_connected(dropout2, 10, activation='softmax')\n", | |
"\n", | |
"net = tflearn.regression(softmax, optimizer=tflearn.RMSProp(), loss='categorical_crossentropy')\n", | |
"\n", | |
"# Training\n", | |
"model = tflearn.DNN(net, tensorboard_verbose=0)\n", | |
"model.fit(X, Y, n_epoch=16, batch_size=128, validation_set=(testX, testY), \n", | |
" show_metric=True, shuffle=True, run_id=\"dense_model\")" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 2", | |
"language": "python", | |
"name": "python2" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 2 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython2", | |
"version": "2.7.12" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 1 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment