Skip to content

Instantly share code, notes, and snippets.

@rxaviers
rxaviers / gist:7360908
Last active April 21, 2025 10:46
Complete list of github markdown emoji markup

People

:bowtie: :bowtie: 😄 :smile: 😆 :laughing:
😊 :blush: 😃 :smiley: ☺️ :relaxed:
😏 :smirk: 😍 :heart_eyes: 😘 :kissing_heart:
😚 :kissing_closed_eyes: 😳 :flushed: 😌 :relieved:
😆 :satisfied: 😁 :grin: 😉 :wink:
😜 :stuck_out_tongue_winking_eye: 😝 :stuck_out_tongue_closed_eyes: 😀 :grinning:
😗 :kissing: 😙 :kissing_smiling_eyes: 😛 :stuck_out_tongue:
@xk
xk / brightness.c
Created February 11, 2014 22:02
Brightness.c
/* gcc -std=c99 -o brightness brightness.c -framework IOKit -framework ApplicationServices */
#include <stdio.h>
#include <unistd.h>
#include <IOKit/graphics/IOGraphicsLib.h>
#include <ApplicationServices/ApplicationServices.h>
const int kMaxDisplays = 16;
const CFStringRef kDisplayBrightness = CFSTR(kIODisplayBrightnessKey);
const char *APP_NAME;

测试平台:DigitalOcean VPS ubuntu14.04 x64, strongswan5.2.2

运行以下命令请使用root权限

一:安装strongswan

由于ubuntu软件仓库中strongswan版本较低,因此从官网源码编译安装

apt-get install build-essential     #编译环境
aptitude install libgmp10 libgmp3-dev libssl-dev pkg-config libpcsclite-dev libpam0g-dev     #编译所需要的软件
@paulochf
paulochf / ipython_notebook_large_width.py
Last active November 14, 2024 11:23
IPython/Jupyter Notebook enlarge/change cell width
from IPython.display import display, HTML
display(HTML(data="""
<style>
div#notebook-container { width: 95%; }
div#menubar-container { width: 65%; }
div#maintoolbar-container { width: 99%; }
</style>
"""))
@baraldilorenzo
baraldilorenzo / readme.md
Last active January 14, 2025 11:07
VGG-16 pre-trained model for Keras

##VGG16 model for Keras

This is the Keras model of the 16-layer network used by the VGG team in the ILSVRC-2014 competition.

It has been obtained by directly converting the Caffe model provived by the authors.

Details about the network architecture can be found in the following arXiv paper:

Very Deep Convolutional Networks for Large-Scale Image Recognition

K. Simonyan, A. Zisserman

How to install OpenCV 3.1 on Ubuntu 14.04 64bits

Update latest packages and installed

$ sudo apt-get update
$ sudo apt-get upgrade

apt-get update - 更新最新的套件資訊 apt-get upgrade - 更新套件

@zezba9000
zezba9000 / VTableMethodHooking.cpp
Last active October 11, 2018 02:08
VTable Method hooking
#include "stdafx.h"
#include <Windows.h>
#include <iostream>
#include <string>
using namespace std;
class Base
{
public:
virtual void foo(int i)
@fchollet
fchollet / classifier_from_little_data_script_1.py
Last active February 26, 2025 01:37
Updated to the Keras 2.0 API.
'''This script goes along the blog post
"Building powerful image classification models using very little data"
from blog.keras.io.
It uses data that can be downloaded at:
https://www.kaggle.com/c/dogs-vs-cats/data
In our setup, we:
- created a data/ folder
- created train/ and validation/ subfolders inside data/
- created cats/ and dogs/ subfolders inside train/ and validation/
- put the cat pictures index 0-999 in data/train/cats
@fchollet
fchollet / classifier_from_little_data_script_2.py
Last active February 26, 2025 01:37
Updated to the Keras 2.0 API.
'''This script goes along the blog post
"Building powerful image classification models using very little data"
from blog.keras.io.
It uses data that can be downloaded at:
https://www.kaggle.com/c/dogs-vs-cats/data
In our setup, we:
- created a data/ folder
- created train/ and validation/ subfolders inside data/
- created cats/ and dogs/ subfolders inside train/ and validation/
- put the cat pictures index 0-999 in data/train/cats
@fchollet
fchollet / classifier_from_little_data_script_3.py
Last active February 26, 2025 01:37
Fine-tuning a Keras model. Updated to the Keras 2.0 API.
'''This script goes along the blog post
"Building powerful image classification models using very little data"
from blog.keras.io.
It uses data that can be downloaded at:
https://www.kaggle.com/c/dogs-vs-cats/data
In our setup, we:
- created a data/ folder
- created train/ and validation/ subfolders inside data/
- created cats/ and dogs/ subfolders inside train/ and validation/
- put the cat pictures index 0-999 in data/train/cats