-
-
Save yratof/e1dfec26d571849ad72ab15e8b8f6113 to your computer and use it in GitHub Desktop.
Allows you to use Ableton projects and exports as reels for the Make Noise Morphagene eurorack module.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python2 | |
# -*- coding: utf-8 -*- | |
""" | |
USAGE: | |
morphagene_ableton.py -w <inputwavfile> -l <inputlabels> -o <outputfile>' | |
Instructions in Ableton: | |
Insert locators as splice markers in your project (Create > Add Locator) | |
Export Audio/Video with | |
Sample Rate: 48000 Hz | |
Encode PCM: enabled | |
File Type: WAV | |
Bit Depth: 16 | |
Save your Ableton project. | |
The associated Ableton Live Set .als-file will serve as the inputlabels argument | |
Used to convert Ableton Locators from an Ableton Live Set file on .WAV files into | |
single 32-bit float .WAV with CUE markers within the file, directly | |
compatible with the Make Noise Morphagene. | |
Does not require input file to be 48000Hz, only that the Ableton label matches | |
the .WAV file that generated it, and that the input .WAV is stereo. | |
See the Morphagene manual for naming conventions of output files: | |
http://www.makenoisemusic.com/content/manuals/morphagene-manual.pdf | |
# see http://stackoverflow.com/questions/15576798/create-32bit-float-wav-file-in-python | |
# see... http://blog.theroyweb.com/extracting-wav-file-header-information-using-a-python-script | |
# marker code from Joseph Basquin [https://gist.github.com/josephernest/3f22c5ed5dabf1815f16efa8fa53d476] | |
""" | |
import sys, getopt | |
import struct | |
import numpy as np | |
from scipy import interpolate | |
import gzip | |
import xml.etree.ElementTree as ET | |
def float32_wav_file(file_name, sample_array, sample_rate, | |
markers=None, verbose=False): | |
(M,N)=sample_array.shape | |
#print "len sample_array=(%d,%d)" % (M,N) | |
byte_count = M * N * 4 # (len(sample_array)) * 4 # 32-bit floats | |
wav_file = "" | |
# write the header | |
wav_file += struct.pack('<ccccIccccccccIHHIIHH', | |
'R', 'I', 'F', 'F', | |
byte_count + 0x2c - 8, # header size | |
'W', 'A', 'V', 'E', 'f', 'm', 't', ' ', | |
0x10, # size of 'fmt ' header | |
3, # format 3 = floating-point PCM | |
M, # channels | |
sample_rate, # samples / second | |
sample_rate * 4, # bytes / second | |
4, # block alignment | |
32) # bits / sample | |
wav_file += struct.pack('<ccccI', | |
'd', 'a', 't', 'a', byte_count) | |
if verbose: | |
print("packing...") | |
# flatten data in an alternating fashion | |
# see: http://soundfile.sapp.org/doc/WaveFormat/ | |
reordered_wav = [sample_array[k,j] for j in range(N) for k in range(M)] | |
wav_file += struct.pack('<%df' % len(reordered_wav), *reordered_wav) | |
if verbose: | |
print("saving audio...") | |
fid=open(file_name,'wb') | |
for value in wav_file: | |
fid.write(value) | |
if markers: # != None and != [] | |
if verbose: | |
print("saving cue markers...") | |
if isinstance(markers[0], dict):# then we have [{'position': 100, 'label': 'marker1'}, ...] | |
labels = [m['label'] for m in markers] | |
markers = [m['position'] for m in markers] | |
else: | |
labels = ['' for m in markers] | |
fid.write(b'cue ') | |
size = 4 + len(markers) * 24 | |
fid.write(struct.pack('<ii', size, len(markers))) | |
for i, c in enumerate(markers): | |
s = struct.pack('<iiiiii', i + 1, c, 1635017060, 0, 0, c)# 1635017060 is struct.unpack('<i',b'data') | |
fid.write(s) | |
lbls = '' | |
for i, lbl in enumerate(labels): | |
lbls += b'labl' | |
label = lbl + ('\x00' if len(lbl) % 2 == 1 else '\x00\x00') | |
size = len(lbl) + 1 + 4 # because \x00 | |
lbls += struct.pack('<ii', size, i + 1) | |
lbls += label | |
fid.write(b'LIST') | |
size = len(lbls) + 4 | |
fid.write(struct.pack('<i', size)) | |
fid.write(b'adtl')# https://web.archive.org/web/20141226210234/http://www.sonicspot.com/guide/wavefiles.html#list | |
fid.write(lbls) | |
fid.close() | |
def wav_file_read(filename,verbose=False): | |
# read file and close | |
fi=open(filename,'rb') | |
data=fi.read() | |
fi.close() | |
# take raw data and read subsections for important format data | |
A,B,C,D=struct.unpack('4c', data[0:4]) # 'RIFF' | |
ChunkSize=struct.unpack('<l', data[4:8])[0] #4+(8+SubChunk1Size)+8+SubChunk2Size) | |
A,B,C,D=struct.unpack('4c', data[8:12]) # 'WAVE' | |
A,B,C,D=struct.unpack('4c', data[12:16]) # 'fmt ' | |
Subchunk1Size=struct.unpack('<l', data[16:20])[0] # LITTLE ENDIAN, long, 16 | |
AudioFormat=struct.unpack('<h', data[20:22])[0] # LITTLE ENDIAN, short, 1 | |
NumChannels=struct.unpack('<h', data[22:24])[0] # LITTLE ENDIAN, short, Mono = 1, Stereo = 2 | |
SampleRate =struct.unpack('<l', data[24:28])[0] # LITTLE ENDIAN, long, sample rate in samples per second | |
ByteRate=struct.unpack('<l', data[28:32])[0] # self.SampleRate * self.NumChannels * self.BitsPerSample/8)) # (ByteRate) LITTLE ENDIAN, long | |
BlockAlign=struct.unpack('<h', data[32:34])[0] # self.NumChannels * self.BitsPerSample/8)) # (BlockAlign) LITTLE ENDIAN, short | |
BitsPerSample=struct.unpack('<h', data[34:36])[0] # LITTLE ENDIAN, short | |
A,B,C,D=struct.unpack('4c', data[36:40]) # BIG ENDIAN, char*4 | |
SubChunk2Size=struct.unpack('<l', data[40:44])[0] # LITTLE ENDIAN, long | |
waveData=data[44:] | |
(M,N)=(len(waveData),len(waveData[0])) | |
if verbose: | |
print("ChunkSize =%d\nSubchunk1Size =%d\nAudioFormat =%d\nNumChannels =%d\nSampleRate =%d\nByteRate =%d\nBlockAlign =%d\nBitsPerSample =%d\nA:%c, B:%c, C:%c, D:%c\nSubChunk2Size =%d" % | |
(ChunkSize , | |
Subchunk1Size, | |
AudioFormat , | |
NumChannels , | |
SampleRate , | |
ByteRate , | |
BlockAlign , | |
BitsPerSample , | |
A, B, C, D , | |
SubChunk2Size )) | |
# convert audio data to float based on bitdepth | |
if BitsPerSample==8: | |
if verbose: | |
print("Unpacking 8 bits on len(waveData)=%d" % len(waveData)) | |
d=np.fromstring(waveData,np.uint8) | |
floatdata=d.astype(np.float64)/np.float(127) | |
elif BitsPerSample==16: | |
if verbose: | |
print("Unpacking 16 bits on len(waveData)=%d" % len(waveData)) | |
d=np.zeros(SubChunk2Size/2, dtype=np.int16) | |
j=0 | |
for k in range(0, SubChunk2Size, 2): | |
d[j]=struct.unpack('<h',waveData[k:k+2])[0] | |
j=j+1 | |
floatdata=d.astype(np.float64)/np.float(32767) | |
elif BitsPerSample==24: | |
if verbose: | |
print("Unpacking 24 bits on len(waveData)=%d" % len(waveData)) | |
d=np.zeros(SubChunk2Size/3, dtype=np.int32) | |
j=0 | |
for k in range(0, SubChunk2Size, 3): | |
d[j]=struct.unpack('<l',struct.pack('c',waveData[k])+waveData[k:k+3])[0] | |
j=j+1 | |
floatdata=d.astype(np.float64)/np.float(2147483647) | |
else: # anything else will be considered 32 bits | |
if verbose: | |
print("Unpacking 32 bits on len(waveData)=%d" % len(waveData)) | |
d=np.fromstring(waveData,np.int32) | |
floatdata=d.astype(np.float64)/np.float(2147483647) | |
v=floatdata[0::NumChannels] | |
for i in range(1,NumChannels): | |
v=np.vstack((v,floatdata[i::NumChannels])) | |
#return (np.vstack((floatdata[0::2],floatdata[1::2])), SampleRate, NumChannels, BitsPerSample) | |
return (v, SampleRate, NumChannels, BitsPerSample) | |
def load_ableton_labels(label_file): | |
''' | |
Loads Ableton Live locators and calculates the timecode based on tempo and locator measure | |
''' | |
# Open Ableton ALS file as gzip and read tempo and locator data as XML | |
with gzip.open(label_file, mode='r') as f: | |
data = f.read() | |
root = ET.fromstring(data) | |
bpm = None | |
markers = [] | |
for tempo in root.iter('Tempo'): | |
for manual in tempo.findall('Manual'): | |
bpm = float(manual.get('Value')) | |
bps = bpm / 60 | |
print("BPM: {0}, BPS: {1}".format(bpm,bps)) | |
for locator in root.iter('Locator'): | |
v = float(locator.find('Time').get('Value', 'nan')) | |
print("Locator {0} found at: {1}".format(locator.get('Id'),v/bps)) | |
markers.append(v/bps) | |
return np.array(markers).astype('float') | |
def change_samplerate_interp(old_audio,old_rate,new_rate): | |
''' | |
Change sample rate to new sample rate by simple interpolation. | |
If old_rate > new_rate, there may be aliasing / data loss. | |
Input should be in column format, as the interpolation will be completed | |
on each channel this way. | |
Modified from: | |
https://stackoverflow.com/questions/33682490/how-to-read-a-wav-file-using-scipy-at-a-different-sampling-rate | |
''' | |
if old_rate != new_rate: | |
# duration of audio | |
duration = old_audio.shape[0] / old_rate | |
# length of old and new audio | |
time_old = np.linspace(0, duration, old_audio.shape[0]) | |
time_new = np.linspace(0, duration, int(old_audio.shape[0] * new_rate / old_rate)) | |
# fit old_audio into new_audio length by interpolation | |
interpolator = interpolate.interp1d(time_old, old_audio.T) | |
new_audio = interpolator(time_new).T | |
return new_audio | |
else: | |
print('Conversion not needed, old and new rates match') | |
return old_audio # conversion not needed | |
def main(argv): | |
inputwavefile = '' | |
inputlabelfile = '' | |
outputfile = '' | |
try: | |
opts, args = getopt.getopt(argv,"hw:l:o:",["wavfile=","labelfile=","outputfile="]) | |
except getopt.GetoptError: | |
print('Error in usage, correct format:\n'+\ | |
'morphagene_ableton.py -w <inputwavfile> -l <inputlabels> -o <outputfile>') | |
sys.exit(2) | |
for opt, arg in opts: | |
if opt == '-h': | |
print('morphagene_ableton.py -w <inputwavfile> -l <inputlabels> -o <outputfile>') | |
sys.exit() | |
elif opt in ("-w", "--wavfile"): | |
inputwavefile = arg | |
elif opt in ("-l", "--labelfile"): | |
inputlabelfile = arg | |
elif opt in ("-o", "--outputfile"): | |
outputfile = arg | |
print('Input wave file: %s'%inputwavefile) | |
print('Input label file: %s'%inputlabelfile) | |
print('Output Morphagene reel: %s'%outputfile) | |
########################################################################### | |
''' | |
Write single file, edited in Ableton with labels, to Morphagene 32bit | |
WAV file at 48000hz sample rate. | |
''' | |
########################################################################### | |
morph_srate = 48000 # required samplerate for Morphagene | |
# read labels from stereo Audacity label file, ignore text, and use one channel | |
audac_labs = load_ableton_labels(inputlabelfile) | |
# read pertinent info from audio file, exit if input wave file is broken | |
try: | |
(array,sample_rate,num_channels,bits_per_sample)=wav_file_read(inputwavefile) | |
except: | |
print('Input .wav file %s is poorly formatted, exiting'%inputwavefile) | |
sys.exit() | |
# check if input wav has a different rate than desired Morphagene rate, | |
# and correct by interpolation | |
if sample_rate != morph_srate: | |
print("Correcting input sample rate %iHz to Morphagene rate %iHz"%(sample_rate,morph_srate)) | |
# perform interpolation on each channel, then transpose back | |
array = change_samplerate_interp(array.T,float(sample_rate),float(morph_srate)).T | |
# convert labels in seconds to labels in frames, adjusting for change | |
# in rate | |
sc = float(morph_srate) / float(sample_rate) | |
frame_labs = (audac_labs * sample_rate * sc).astype(np.int) | |
else: | |
frame_labs = (audac_labs * sample_rate).astype(np.int) | |
frame_dict = [{'position': l, 'label': 'marker%i'%(i+1)} for i,l in enumerate(frame_labs)] | |
# write wav file with additional cue markers from labels | |
float32_wav_file(outputfile,array,morph_srate,markers=frame_dict) | |
print('Saved Morphagene reel with %i splices: %s'%(len(frame_labs),outputfile)) | |
if __name__ == "__main__": | |
main(sys.argv[1:]) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment