Last active
May 25, 2016 08:45
-
-
Save ysbaddaden/2eedf0eb41c31190d8795bd88705c3a3 to your computer and use it in GitHub Desktop.
Geographical Distances Benchmarks (Crystal)
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Benchmark run with Crystal 0.17.3 (LLVM 3.6) on "Intel Core i7-4712HQ CPU @ 2.30GHz" CPU | |
Brooklin (block) | |
haversine: 0.144098 | |
sqrt: 0.19007 (+31.904%) | |
spheroid: 0.144098 (+1.59146e-09%) | |
ellipsoid: 0.188279 (+30.6604%) | |
Paris -> Marseille | |
haversine: 660.815 | |
sqrt: 953.726 (+44.3257%) | |
spheroid: 660.958 (+0.021547%) | |
ellipsoid: 641.647 (+-2.90069%) | |
Paris -> New York | |
haversine: 5836.69 | |
sqrt: 8585.3 (+47.0919%) | |
spheroid: 6093.28 (+4.39621%) | |
ellipsoid: 5993.13 (+2.68024%) | |
Paris -> Tokyo | |
haversine: 9712.67 | |
sqrt: 15400.5 (+58.5613%) | |
spheroid: 11395 (+17.3213%) | |
ellipsoid: 2615.34 (+-73.0729%) | |
# M stands for Millions of Iterations per Second: | |
sqrt 354.86M (± 4.72%) 1.12× slower | |
haversine 11.08M (± 2.69%) 35.93× slower | |
spheroid 398.2M (± 5.17%) fastest | |
ellipsoid 354.25M (± 5.41%) 1.12× slower |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# All formulaes come from: | |
# - https://en.wikipedia.org/wiki/Geographical_distance | |
# - https://en.wikipedia.org/wiki/Haversine_formula | |
# | |
# TODO: | |
# - Vincenty's Formulae: https://en.wikipedia.org/wiki/Vincenty%27s_formulae | |
# - Compare distances over different regions over the globe | |
# - Compare distances involving the N/S polars | |
# | |
# Run me with `crystal run --release bench.cr` | |
require "benchmark" | |
RAD_PER_DEG = Math::PI / 180 | |
GREAT_CIRCLE_RADIUS_METERS = 6_371_009.0 | |
macro to_radians(p) | |
{{p}}.map { |n| n * RAD_PER_DEG } | |
end | |
def world_mercator(p) | |
lon, lat = to_radians(p) | |
x = GREAT_CIRCLE_RADIUS_METERS * lon | |
y = GREAT_CIRCLE_RADIUS_METERS * Math.log((Math.sin(lat) + 1) / Math.cos(lat)) | |
{x, y} | |
end | |
# Pythagore (Square Root) with World Mercator projection. | |
def sqrt(p, q) | |
x1, y1 = world_mercator(p) | |
x2, y2 = world_mercator(q) | |
Math.sqrt((x1 - x2) ** 2 + (y2 - y1) ** 2) | |
end | |
macro hav(delta) | |
Math.sin({{delta}} / 2) ** 2 | |
end | |
# Haversine (Spherical projection plane). | |
def haversine(p, q) | |
lon1, lat1 = to_radians(p) | |
lon2, lat2 = to_radians(q) | |
dlon = lon2 - lon1 | |
dlat = lat2 - lat1 | |
a = hav(dlat) + Math.cos(lat1) * Math.cos(lat2) * hav(dlon) | |
d = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1 - a)) | |
d * GREAT_CIRCLE_RADIUS_METERS | |
end | |
# Great Circle (Spheroid projection plane). | |
def spheroid(p, q) | |
lon1, lat1 = to_radians(p) | |
lon2, lat2 = to_radians(q) | |
dlon = lon2 - lon1 | |
dlat = lat2 - lat1 | |
mlat = (lat1 + lat2) / 2 | |
d = Math.sqrt(dlat ** 2 + (Math.cos(mlat) * dlon) ** 2) | |
d * GREAT_CIRCLE_RADIUS_METERS | |
end | |
# Ellipsoid projection plane (FCC). | |
def ellipsoid(p, q) | |
lon1, lat1 = p | |
lon2, lat2 = q | |
dlon = lon2 - lon1 | |
dlat = lat2 - lat1 | |
mlat = (lat1 + lat2) / 2 | |
klat = 111.13209 - 0.56605 * Math.cos(2 * mlat) + 0.00120 * Math.cos(4 * mlat) | |
klon = 111.41513 * Math.cos(mlat) - 0.09455 * Math.cos(3 * mlat) + 0.00012 * Math.cos(5 * mlat) | |
d = Math.sqrt((klat * dlat) ** 2 + (klon * dlon) ** 2) | |
d * 1000 | |
end | |
def compare(p, q) | |
hdist = haversine(p, q) / 1000 | |
rdist = sqrt(p, q) / 1000 | |
sdist = spheroid(p, q) / 1000 | |
edist = ellipsoid(p, q) / 1000 | |
puts "haversine: #{hdist}" | |
puts " sqrt: #{rdist} (+#{100 / hdist * rdist - 100}%)" | |
puts " spheroid: #{sdist} (+#{100 / hdist * sdist - 100}%)" | |
puts "ellipsoid: #{edist} (+#{100 / hdist * edist - 100}%)" | |
end | |
Brooklin1 = {-73.993683, 40.700667} | |
Brooklin2 = {-73.995389, 40.700586} | |
Marseille = {5.38,43.29} | |
NewYork = {-74.0, 40.717} | |
Paris = {2.35, 48.85} | |
Tokyo = {139.69,35.69} | |
puts "\nBrooklin (one block)" | |
compare(Brooklin1, Brooklin2) | |
puts "\nParis -> Marseille" | |
compare(Paris, Marseille) | |
puts "\nParis -> New York" | |
compare(Paris, NewYork) | |
puts "\nParis -> Tokyo" | |
compare(Paris, Tokyo) | |
puts | |
Benchmark.ips do |x| | |
x.report("sqrt") { sqrt(Paris, NewYork) } | |
x.report("haversine") { haversine(Paris, NewYork) } | |
x.report("spheroid") { spheroid(Paris, NewYork) } | |
x.report("ellipsoid") { ellipsoid(Paris, NewYork) } | |
end |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment