Leetcode Hash Tables Python zip( a ) zip( * a) map()
? sum(S[-a-b] for a in A for b in B)
| <?xml version="1.0" encoding="UTF-8"?> | |
| <module type="PYTHON_MODULE" version="4"> | |
| <component name="NewModuleRootManager"> | |
| <content url="file://$MODULE_DIR$" /> | |
| <orderEntry type="inheritedJdk" /> | |
| <orderEntry type="sourceFolder" forTests="false" /> | |
| </component> | |
| <component name="TestRunnerService"> | |
| <option name="projectConfiguration" value="Nosetests" /> | |
| <option name="PROJECT_TEST_RUNNER" value="Nosetests" /> | |
| </component> | |
| </module> |
| <?xml version="1.0" encoding="UTF-8"?> | |
| <project version="4"> | |
| <component name="ProjectRootManager" version="2" project-jdk-name="Python 2.7.12 (~/anaconda2/bin/python)" project-jdk-type="Python SDK" /> | |
| </project> |
| <?xml version="1.0" encoding="UTF-8"?> | |
| <project version="4"> | |
| <component name="ProjectModuleManager"> | |
| <modules> | |
| <module fileurl="file://$PROJECT_DIR$/.idea/leetcode.iml" filepath="$PROJECT_DIR$/.idea/leetcode.iml" /> | |
| </modules> | |
| </component> | |
| </project> |
| <?xml version="1.0" encoding="UTF-8"?> | |
| <project version="4"> | |
| <component name="VcsDirectoryMappings"> | |
| <mapping directory="$PROJECT_DIR$" vcs="Git" /> | |
| </component> | |
| </project> |
| class Solution(object): | |
| def findMaxConsecutiveOnes(self, nums): | |
| """ | |
| :type nums: List[int] | |
| :rtype: int | |
| """ | |
| count=0 | |
| max_count=0 | |
| for i in nums: | |
| if i ==1: | |
| count=count+1 | |
| if count>max_count: | |
| max_count=count | |
| else: | |
| count=0 | |
| return max_count |
| class Solution(object): | |
| def isHappy(self, n): | |
| """ | |
| :type n: int | |
| :rtype: bool | |
| """ | |
| mem = set() | |
| while n != 1: | |
| n = sum([int(i)**2 for i in str(n)]) | |
| print n | |
| if n not in mem: | |
| mem.add(n) | |
| else: | |
| return False | |
| return True |
| class Solution(object): | |
| def numberOfBoomerangs(self, points): | |
| """ | |
| :type points: List[List[int]] | |
| :rtype: int | |
| """ | |
| res = 0 | |
| for p in points: | |
| cmap = {} | |
| for q in points: | |
| f = p[0]-q[0] | |
| s = p[1]-q[1] | |
| cmap[f*f + s*s] = 1 + cmap.get(f*f + s*s, 0) | |
| for k in cmap: | |
| res += cmap[k] * (cmap[k] -1) | |
| return res |
Leetcode Hash Tables Python zip( a ) zip( * a) map()
? sum(S[-a-b] for a in A for b in B)
| from __future__ import absolute_import | |
| from __future__ import print_function | |
| import autograd.numpy as np | |
| from autograd import grad | |
| from autograd.util import quick_grad_check | |
| from builtins import range | |
| def sigmoid(x): | |
| return 0.5*(np.tanh(x) + 1) | |
| def logistic_predictions(weights, inputs): | |
| # Outputs probability of a label being true according to logistic model. | |
| return sigmoid(np.dot(inputs, weights)) | |
| def training_loss(weights): | |
| # Training loss is the negative log-likelihood of the training labels. | |
| preds = logistic_predictions(weights, inputs) | |
| label_probabilities = preds * targets + (1 - preds) * (1 - targets) | |
| return -np.sum(np.log(label_probabilities)) | |
| # Build a toy dataset. | |
| inputs = np.array([[0.52, 1.12, 0.77], | |
| [0.88, -1.08, 0.15], | |
| [0.52, 0.06, -1.30], | |
| [0.74, -2.49, 1.39]]) | |
| targets = np.array([True, True, False, True]) | |
| # Build a function that returns gradients of training loss using autograd. | |
| training_gradient_fun = grad(training_loss) | |
| # Check the gradients numerically, just to be safe. | |
| weights = np.array([0.0, 0.0, 0.0]) | |
| quick_grad_check(training_loss, weights) | |
| # Optimize weights using gradient descent. | |
| print("Initial loss:", training_loss(weights)) | |
| for i in range(100): | |
| weights -= training_gradient_fun(weights) * 0.01 | |
| print("Trained loss:", training_loss(weights)) |