Created
December 20, 2020 23:50
-
-
Save yuchenlin/9fceb3533b1a0a4bcc4bf87ab2aa2d21 to your computer and use it in GitHub Desktop.
Text Clustering with Sentence BERT
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from sentence_transformers import SentenceTransformer # pip install -U sentence-transformers | |
from sklearn.cluster import KMeans | |
from collections import defaultdict | |
INPUT_FILE = "/tmp/test_input.txt" | |
with open(INPUT_FILE, "r") as f: | |
lines = f.read().splitlines() | |
print(len(lines)) | |
corpus = [line.strip().lower() for line in lines] | |
embedder = SentenceTransformer('distilbert-base-nli-stsb-mean-tokens') | |
corpus_embeddings = embedder.encode(corpus, show_progress_bar=True, batch_size=8) | |
### KMEANS clustering | |
num_clusters = 100 | |
clustering_model = KMeans(n_clusters=num_clusters) | |
clustering_model.fit(corpus_embeddings) | |
cluster_assignment = clustering_model.labels_ | |
clusters = [[] for _ in range(len(cluster_assignment))] | |
for sent_id, cluster_label in enumerate(cluster_assignment): | |
clusters[cluster_label].append(corpus[sent_id]) | |
clusters.sort(key=lambda x:len(x), reverse=True) | |
# Ouput | |
cnt_gourps = 0 | |
text = "" | |
for c in range(len(clusters)): | |
if clusters[c]: | |
text += "\n" + "-"*50 + "\n" | |
text += "Cluster:%d\n"%c | |
text += "\n".join(clusters[c]) | |
if len(clusters[c])>=2: | |
cnt_gourps += 1 | |
print(cnt_gourps) | |
with open("/tmp/test_cluter.txt", "w") as f: | |
f.write(text) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment