Last active
November 5, 2024 14:23
-
-
Save yuchenlin/a2f42d3c4378ed7b83de65c7a2222eb2 to your computer and use it in GitHub Desktop.
A simple example script for predicting masked words in a sentence using BERT.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
from transformers import BertTokenizer, BertModel, BertForMaskedLM | |
import logging | |
logging.basicConfig(level=logging.INFO)# OPTIONAL | |
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') | |
model = BertForMaskedLM.from_pretrained('bert-base-uncased') | |
model.eval() | |
# model.to('cuda') # if you have gpu | |
def predict_masked_sent(text, top_k=5): | |
# Tokenize input | |
text = "[CLS] %s [SEP]"%text | |
tokenized_text = tokenizer.tokenize(text) | |
masked_index = tokenized_text.index("[MASK]") | |
indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text) | |
tokens_tensor = torch.tensor([indexed_tokens]) | |
# tokens_tensor = tokens_tensor.to('cuda') # if you have gpu | |
# Predict all tokens | |
with torch.no_grad(): | |
outputs = model(tokens_tensor) | |
predictions = outputs[0] | |
probs = torch.nn.functional.softmax(predictions[0, masked_index], dim=-1) | |
top_k_weights, top_k_indices = torch.topk(probs, top_k, sorted=True) | |
for i, pred_idx in enumerate(top_k_indices): | |
predicted_token = tokenizer.convert_ids_to_tokens([pred_idx])[0] | |
token_weight = top_k_weights[i] | |
print("[MASK]: '%s'"%predicted_token, " | weights:", float(token_weight)) | |
predict_masked_sent("My [MASK] is so cute.", top_k=5) | |
''' | |
The above code will output: | |
[MASK]: 'mom' | weights: 0.10288725048303604 | |
[MASK]: 'brother' | weights: 0.08429113030433655 | |
[MASK]: 'dad' | weights: 0.08260555565357208 | |
[MASK]: 'girl' | weights: 0.06902255117893219 | |
[MASK]: 'sister' | weights: 0.04804788902401924 | |
''' |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment