Skip to content

Instantly share code, notes, and snippets.

@yudhastyawan
Last active May 1, 2021 21:08
Show Gist options
  • Save yudhastyawan/aa7be20d7792397c77626a7e660c1590 to your computer and use it in GitHub Desktop.
Save yudhastyawan/aa7be20d7792397c77626a7e660c1590 to your computer and use it in GitHub Desktop.
Jupyter notebooks and labs
Display the source blob
Display the rendered blob
Raw
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Display the source blob
Display the rendered blob
Raw
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Display the source blob
Display the rendered blob
Raw
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Display the source blob
Display the rendered blob
Raw
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Display the source blob
Display the rendered blob
Raw
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "code",
"execution_count": 2,
"id": "bb333be6-11c7-44c4-956a-052ef170c09d",
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import matplotlib.pyplot as plt"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "a16da80f-8483-4704-979d-f202ea33b3ca",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[<matplotlib.lines.Line2D at 0x7fab8abdd340>]"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAAwqklEQVR4nO3deXjU5b338fc9M9kzk4TMhGyEhJAwA5RdFEgCKnpcsT3VVlvPceumx+7n9LE9ffr0dLt6up0ubq3WpdVqrfVUraigsi8iCChkIQmBECD7vmcy9/NHEooIySSZyW+W7+u6el0wmczv28F88pt7+d5Ka40QQojgZzK6ACGEEL4hgS6EECFCAl0IIUKEBLoQQoQICXQhhAgRFqMubLfbdXZ2tlGXF0KIoLRv375GrbXjfF8zLNCzs7PZu3evUZcXQoigpJQ6fqGvyZCLEEKECAl0IYQIERLoQggRIiTQhRAiREigCyFEiJBAF0KIECGBLoQQIUICXQjhV/urW9h7rNnoMsKCBLoQwq++/txBvvrcAeTsBf+TQBdC+E1FfSdHG7s40dzD8aZuo8sJeRLoQgi/2Vhcd+bPW8sbDKwkPEigCyH8ZkNxLQsyE8iaFsvWI41GlxPyJNCFEH5R397LgROtXOGaTmGenV2VjfS7PUaXFdIk0IUQfvFGST1awxXzplOY56Crf5D91S1GlxXSJNCFEH6xsbiWrGmxzJluZeXsZMwmJePofiaBLoTwuc4+Nzsqm7hi7nSUUtiiI1g8I5Ft5TKO7k8S6EIIn9t6pIF+t4cr504/81hRvoP3T7bR3NVvYGWhTQJdCOFzG4vrSIqNYOnMpDOPFebZ0Rq2V8hdur8EXaD/dV8N1/xqG4Me2XUmRCAaGPTwZkkdlzmnYzH/I2IWZCaSEBPBtiMyju4vQRfoHq0pPt3OsaYuo0sRQpzHO1XNtPe6uXLe9A88bjYpCmbb2VreIG0A/CToAt2VZgOg9HSHwZUIIc5nQ3EdURYThXn2D32tMM9OXXsf5fWdBlQW+oIu0GenxGM2KUpr240uRQhxDq01G4vrKMxzEBtp+dDXC/MdwNCkqfC9oAv06Agzs+xxlJyWQBci0BSfbudka88HVrecLSMxhlxHHFtl+aJfBF2gAzjTbJTIkIsQAWdjcR1KwWWulAs+pyjfwdtHm+gdGJzCysJDUAa6K83KydYe2nsHjC5FCHGWDYfrWDYzCXt81AWfU5TnoM/t4R059MLngjPQU2ViVIhAU9PSTfHpdq64wHDLiItnTSPSbJJdo34QlIHuTLMCyMSoEAFkpPf5FXNTR31ebKSFZdlJMjHqB0EZ6Km2aBJiImQcXYgAsrG4jryUeHLscWM+tyjfQWltB/XtvVNQWfgIykBXSuFKs8pKFyECRFv3AG9XNY853DJiZI26rHbxraAMdABnqo2y2g480gJACMO9VVbHoEdz5bzRh1tGuFJt2OMj2SbtdH0qaAPdlWalZ2CQ6mY5eFYIo20sriPFGsWCjASvnm8yKQrzHGwvb5SbMh8K4kAfXukiE6NCGKp3YJDNZQ2snTsdk0l5/X2FeXaauvoplqFTnwnaQM9LsWJSUCwTo0IYaldlE939gxfcHXohBWfG0WXYxVeCNtBjIs1k2+Mold/uQhhqQ3Ed8VEWVuQmj+v7UqzRuNJssnzRh4I20GFo2KW0Vu7QhTCKx6N5o6SO1XMcRFnM4/7+onw7+4630NXn9kN14Se4Az3VSnVzNx3SAkAIQxyoaaWho2/cwy0jivIcDAxqdh9t8nFl4SmoA9053ALgSJ3cpQthhA2H67CYFGvmXLgZ12iWzkwiOkLaAPhKUAe6K30o0GXHqBDG2FhcyyWzkkmIiZjQ90dHmLlkVrKMo/uIV4GulLpKKVWmlKpQSt13nq9nKaU2KaX2K6XeU0pd4/tSPyw9IRprtEV2jAphgMqGTioburzeHXohhXkOjjZ2cUL2lEzamIGulDIDDwBXA3OBW5RSc8952reB57TWi4GbgQd9XegFasOVKhOjQhhhpBnX2kkG+ur8oeWL2ytk2GWyvLlDXw5UaK2Paq37gWeBG855jgZsw39OAE75rsTRudKs0gJACANsLK5jfoaNjMSYSb1OriOetIRoGXbxAW8CPQM4cdbfa4YfO9t3gVuVUjXAeuCL53shpdTnlFJ7lVJ7Gxp884/nTLPR2eempqXHJ68nhBhbQ0cf71a3cIXLu94to1FKUZTnYEdFI+5Bjw+qC1++mhS9BXhCa50JXAP8USn1odfWWv9Oa71Ma73M4XD45MLO1KHe6CXSAkCIKfNmSR1aw5XzJjfcMqIw3057r5uDNW0+eb1w5U2gnwRmnPX3zOHHznYX8ByA1noXEA3YfVHgWOakWlFKTi8SYiptLK4jMynmzA3VZBXMtqMU0n1xkrwJ9HeAPKVUjlIqkqFJz5fOeU41cDmAUsrFUKBPyb9MbKSF7OQ4adIlxBTp6nOzraKRK+ZORynvm3GNJjE2kgWZiTKOPkljBrrW2g3cC7wOlDC0muWwUup7Sql1w0/7OvBZpdRB4Bngdq31lM1SOlPlsAshpsq28gb63R6uHOOoufEqyrNz4EQrbT2y83uivBpD11qv11rna61ztdY/HH7sO1rrl4b/XKy1XqW1Xqi1XqS13uDPos/lTLVxvLlb+kEIMQU2FNeRGBvBRdlJPn3donwHHg27KmX54kQF9U7REa40K1pLCwAh/M096OGt0nouc6ZgMfs2PhbNSCQ+ysKWIxLoExUigS4tAISYCu8ca6G1e2DCzbhGE2E2sTJ3qA3AFI7YhpSQCPSMxBjioywyMSqEn20oriXSYqIwzzfLjs9VmO/gZGsPVY1dfnn9UBcSgW4yKZypVlm6KIQfaa3ZWFxH4Ww7cVEWv1xj9fAvCum+ODEhEegAzjQrJbXt8lFNCD8pre2gpqVn0s24RpOVHMvM5FhZvjhBoRPoqTY6et2cbJUWAEL4w4bDdSgFl7v8F+gwdHj0rqNN9LulDcB4hUygj0yMyrCLEP6xsaSWJVlJOKxRfr1OUZ6D7v5B9h1v8et1QlHIBPqckZ4ussFICJ872drDoZPtfh1uGbEiNxmLSUkbgAkImUCPj7KQNS1WeqML4QdvDPc+98dyxXNZoyNYkpUkE6MTEDKBDsMtAGTpohA+t7G4jlxHHLMc8VNyvcI8O4dOtdHU2Tcl1wsVIRXorjQbxxq76OkfNLoUIUJGW88Au482cYWPe7eMpijfgdZyitF4hVigW/FICwAhfGpzWT1uj/ZZ73NvzM9IIDE2gq3SBmBcQirQnanDK11k2EUIn9lwuA6HNYpFmYlTdk2zSbFqtp1t5dIGYDxCKtCzpsUSG2mWni5C+Eife5DNZfWsdaVgMvmm97m3Vuc5qO/oo0w+cXstpALdZFLMkd7oQvjMrsomuvoHfd773BuF+UOHnm2TYRevhVSgw9CwS2lth3xME8IHNhTXERtpZkVu8pRfOy0hhryUeLbKenSvhVygz02z0tYzQG17r9GlCBHUPB7NG8V1rJnjIDrCbEgNhXkO9lQ10zsgK9e8EXKB7jzTG12GXYSYjIM1rdR39E3J7tALKcq30+f2sKeq2bAagknIBfo/WgDIRIoQk7GxuA6zSXHpnBTDarg4J5lIi0m6L3op5ALdFh1BZlKMtAAQYpI2Ftdxcc40EmMjDashJtLM8uxp0gbASyEX6DA0MSpDLkJMXFVjF+X1nYYOt4wozLNTVtdBbZvMi40lJAPdlWblaEOnTKQIMUEbi2sBAiTQR04xkmGXsYRooNvwaKio7zS6FCGC0sbiOuam2chMijW6FFxpVuzxUTLs4oWQDHSn9EYXYsIaO/vYe7wlIO7OAZRSFOXZ2V7RiMcj+0tGE5KBPjM5jugIk6x0EWIC3iqpR2umtBnXWIryHTR39XP4lNykjSYkA91sUsyZbpUmXUJMwIbiWjISY5g7vKcjEBTkDbUBkF2jowvJQIehcfSS0+3SAkCIcejud7OtvJEr5k5HqaltxjUae3wU89Jtsh59DCEb6M5UKy3dA9R3yIknQnhrW3kjfW7PlBw1N16FeQ72HW+hs89tdCkBK3QDXVoACDFuGw7XYYu2cFHONKNL+ZCiPDtuj2Z3ZZPRpQSskA1015nDLmRiVAhvuAc9vFVax+Wu6USYAy8almYnERNhlnH0UQTev5qPJMRGkJ4QLXfoQnhp7/EWWroHAma54rmiLGYumSVtAEYTsoEOQ8MupbJ0UQivbCyuI9JsoijfYXQpF1SU76CqsYsTzd1GlxKQQjrQXWlWKhs66XNLCwAhRqO1ZmNxHatmJxMfZTG6nAsaaQMgwy7nF9KB7ky14fZoaQEgxBjK6jqobu7mCgOOmhuPXEccGYkxcizdBYR0oLvShloAyLCLEKPbeLgOpWDtXON6n3tDKUVhnp0dlY24Bz1GlxNwQjrQs5PjiLKYZMeoEGPYUFzHohmJpFijjS5lTEX5Djp63RysaTW6lIAT0oFuMZvIn26VpYtCjOJ0Ww/vn2wL2NUt51qZm4xJwRYZdvkQrwJdKXWVUqpMKVWhlLrvAs/5hFKqWCl1WCn1J9+WOXHOVKssXRRiFG8U1wFwZYCPn49IjI1kQWai9Ec/jzEDXSllBh4ArgbmArcopeae85w84JvAKq31POArvi91YlxpNho7+2mQFgBCnNeG4jpm2eOYnRJvdCleK8p3cPBEK23dA0aXElC8uUNfDlRorY9qrfuBZ4EbznnOZ4EHtNYtAFrret+WOXHOkYlRGUcX4kPaewfYfbQpaIZbRhTl2fFo2FEpwy5n8ybQM4ATZ/29Zvixs+UD+UqpHUqp3Uqpq873Qkqpzyml9iql9jY0TM3HJWeq9HQR4kI2lzUwMKgDqve5NxbNSMQaZZFhl3P4alLUAuQBa4BbgEeUUonnPklr/Tut9TKt9TKHY2p2o02Li2S6LUqWLgpxHhsO12KPj2TRjCSjSxkXi9nEytnJbD3SKC2yz+JNoJ8EZpz198zhx85WA7yktR7QWlcBRxgK+IDgSrNRIitdhPiAPvcgm8saWOuajtkUOL3PvVWU7+Bkaw9HG7uMLiVgeBPo7wB5SqkcpVQkcDPw0jnP+RtDd+copewMDcEc9V2Zk+NMtVFR30G/WzYiCDFi99FmOvvcQTd+PqJopA2AHHpxxpiBrrV2A/cCrwMlwHNa68NKqe8ppdYNP+11oEkpVQxsAv5Dax0wTYtdaVYGBjVHG6UFgBAjNhbXEhNhZtVsu9GlTMiMabFkJ8dK98WzeNWFR2u9Hlh/zmPfOevPGvja8P8Cjmv4sIvS0x1nJkmFCGcej+aN4npW5zuIjjAbXc6EFeU7+MveGvrcg0RZgvf/h6+E9E7RETn2OCLNJlnpIsSw90+2UdveG7TDLSMK8xz0DAyy73iL0aUEhLAI9Aizidkp8TIxKsSwjcV1mE2Ky5yB3YxrLCtyk7GYlAy7DAuLQIehYZdSuUMXAoANxbVclJ1EUlyk0aVMSnyUhSUzk2RidFgYBbqV+o4+mjqlBYAIb8ebujhS1xnwvc+9tTrfweFT7TTKz3b4BLpTDo0WAhgabgG4MsjHz0cU5g2t0tkuwy7hE+gjh13IxKgIdxsO1+FMtTJjWqzRpfjE/PQEkmIj5Fg6wijQk+OjcFij5A49xA16ZBv4aJo6+9h7vDlk7s4BTCZFQZ6DbeXSBiBsAh2kN3qoKzndzrz/9xpbZILsgt4srcej4cp5oTF+PqIwz05DR1/Y37CFVaC70myU13XKWYQh6v5NFfQOeHhwU4XRpQSsjcV1pCdEMy89tDbYjbQBCPfui2EW6Fb6Bz1USTOfkFPV2MWr758mIzGGt6uaOXSyzeiSAk5P/yDbyhu4Yu50lAq+ZlyjSU2IJn96PFvD/Fi6sAr0kZUuxTLsEnJ+u6USi9nEk3cuJzbSzGM7qowuKeBsK2+gd8ATMssVz1WU52DPsWZ6+geNLsUwYRXouY54Iswq7MfZQk1tWy9/fbeGm5ZmMjslnpuWZvLywVPUd/QaXVpA2VhchzXawsWzphldil8U5jvod3t4uypg+gJOubAK9EiLiVxHvOwYDTGPbjvKoEfz+aJcAG5flYPbo3lq13GDKwscgx7Nm6X1XOZMIcIcmj/2F+dMI9JiCus2AKH5LzsKV5qNEjm9KGS0dPXzpz3VXL8wnazkoXXVOfY4Lnem8NTb1fQOhO/H77PtO95Cc1d/0DfjGk10hJmLc6aFdRuAsAt0Z6qV2vZeWrr6jS5F+MCTu47R3T/I3WtyP/D4nQU5NHf18+KBcw/XCk8bi2uJMCtW50/N0Y9GKcyzU17fyem2HqNLMUTYBfqZ3ugyjh70uvrcPLHzGJc7Uz7U537FrGRcaTZ+v70q7DebaK3ZUFzHylw71ugIo8vxq6L8keWL4TnsEnaB7hxuAVBaK+Powe6ZPdW0dg9wz6W5H/qaUoo7V2VzpK6THRXhO0kGUF7fyfGm7pAebhkxZ7qVFGtU2A67hF2gO+KjSI6LlB2jQa7PPcij26pYnjONpTPPv2pj3aJ07PFR/H57wBxva4iRZlzhEOhKKQrzHGyvaAzLNhBhF+hKqaHe6DLkEtT+tv8kte29/Nulsy/4nCiLmX+5ZCabyhqoqA/f82Q3HK5l4YxEptuijS5lShTl22ntHgjLzWVhF+gwNDFaVtsRlr/BQ8GgR/PwlqPMS7dRlDf6AcefviSLSIuJJ3aG50aj2rZeDta0hVQzrrEUDB96HY5tAMIz0NNs9LmlBUCweu1QLVWNXdyzZvaYW9jt8VF8dFE6f913ktbu8FvZtLEktHqfeyM5Por5GbawbAMQloHukonRoKW15sHNFcyyx3HVfO+2sN9ZkEPPwCB/2lPt5+oCz8biOrKTY5mdEm90KVOqMM/Bu9UtdPQOGF3KlArLQJ+dEo/ZpCiVDUZBZ2t5I4dPtfP51bMwm7xrMOVMtbFqdjJ/2HmcgTDqtNnRO8CuykaunJcacs24xlKU58Dt0eyqDK8VTmEZ6FEWM7mOOFnpEoQe3FRBqi2ajy3OHNf33VWQQ217L+vfP+2nygLP5rIGBgZ1WKxuOdfSmUnERprDbj16WAY6DN21yUqX4LLveDNvVzXzmcIcIi3j+093TX4Ks+xxPBYmG4201jy+o4rptiiWZCUZXc6Ui7SYWDErOewmRsM20F1pNk629tDWE15jbMHswU2VJMZGcMvyrHF/r8mkuGNVNgdr2ni3usUP1QWWV94/zbvVrXztinyvh6ZCTWGenWNN3VQ3dRtdypQJ20A/s2NUhl2CQmltO2+W1nP7ymzioiwTeo2PL83EFm3h99tDewlj78Ag//1aKc5UKzcunWF0OYYZaQMQTodHh22gu1Klp0sweWhzJbGRZm5fmT3h14iNtHDLxVm8dqiWmpbQvWt7cucxTjT38O1r54bt3TkMdd3MSIwJqzYAYRvo021RJMVGyNLFIFDd1M3LB0/xqeVZJMZGTuq1bluRjVKKJ3ce801xAaaps4/736rgMmcKBWNsugp1SimK8h3sqmwKm9VNYRvoSimcqdIbPRj8dmslZpPiM4WzJv1a6YkxXPORNJ7dc4LOPrcPqgssv3qznO6BQb51jdPoUgJCUZ6djj43B060Gl3KlAjbQIehcXRpARDY6jt6+cu+Gj6+JJPUBN/0IrlzVTYdfW6e33vCJ68XKCrqO3j67Wo+tTyL2SlWo8sJCCtz7ZgUbAuTYZewDnRXmo2egUGqm0N3PDXY/X57Fe5BD59f/eEWuRO1OCuJJVmJPL7zWEj9Mv/R+lJiI8x8ZW2e0aUEjITYCBbNSGRrmKxHD+9AH5kYlZUuAamtZ4Cnd1dz9UfSyLHH+fS17yzI4XhTN2+V1vv0dY2yvbyRt0rrufey2STHRxldTkApzHPwXk1rWPTyCetAz5sej0khO0YD1B93HaOzz809a3x3dz7iqnmpZCTGhESv9EGP5gevFJOZFMNtk1gFFKqK8h14NGFx0ElYB3p0hJlZjnhKZOliwOnpH+SxHcdYM8fBvPQEn7++xWzitpUz2X20mcOngrtv9vP7TlBa28F9VzuJjjAbXU7AWZiZgDXaEhbLF8M60GGoN7osXQw8f36nmuaufu5Zc+EDLCbrkxdlERtp5rHtx/x2DX/r6nPzsw1HWJKVyLUfSTO6nIBkMZsomG1nW3lDyLd98CrQlVJXKaXKlFIVSqn7Rnnex5VSWim1zHcl+pcrzcaJ5p6wa7MZyAYGPTyyrYplM5NYnnP+4+V8ISEmgpuWZvLywVPUd/T67Tr+9NstlTR09PHt6+aGXUfF8SjMc3CqrZfKhtA+uWrMQFdKmYEHgKuBucAtSqm553meFfgy8Lavi/Snkd7oZTLsEjBePHCKk6095z382dduX5XDgMfDU7uO+/1avnaqtYffbTvK9QvTw7IB13gUDm+yev1wncGV+Jc3d+jLgQqt9VGtdT/wLHDDeZ73feC/gaC61XEOr3SRcfTA4PFoHt5SiTPVyqVzUvx+vRx7HJc7U3jq7Wp6Bwb9fj1f+tnrZXg0fOOf5hhdSsCbMS2Wi3Om8bMNZfzqjXI8IbRc9WzeBHoGcPYOjJrhx85QSi0BZmitXxnthZRSn1NK7VVK7W1oCIwJirSEaGzRFlnpEiA2FNdRUd/J3Wtyp2wI4c6CHJq7+nnxwMkpuZ4vvFfTygv7T3JXQQ4zpsUaXU5QeOKO5Xx0UQb/88YRPvOHvbR1h94w66QnRZVSJuAXwNfHeq7W+nda62Va62UOh2Oyl/YJpRTONJusRQ8AWmse2lxB1rTYKZ3gWzErGWeqlce2HwuKSTOtNT94pYTkuEi/LOkMVTGRZn7xiYV874Z5bD3SwPX3b6f4VGj93HsT6CeBs3twZg4/NsIKzAc2K6WOAZcALwXTxOjcNBtltR0h+zEsWOysbOJgTRufXz0Li3nqFmAppbirIIeyuo6gWKv8+uE69lQ189Ur8rFGRxhdTlBRSvGvK7L58+cvoc89yD8/tIP/3V9jdFk+481PzTtAnlIqRykVCdwMvDTyRa11m9barrXO1lpnA7uBdVrrvX6p2A+cqVa6+gepaekxupSw9uDmChzWKD6+ZHzHy/nCukXp2OMjA36jUb/bw49fLSEvJZ6bLwrfXueTtXTmNF7+YgELMhP56p8P8p0XD9HvDv6OjGMGutbaDdwLvA6UAM9prQ8rpb6nlFrn7wKngjNtaGK0WIZdDHPgRCs7Kpr4TEGOIZtjoixmbr1kJpvKGgJ6adsfdx/nWFM337rWNaWfYkJRijWapz9zMZ8pyOEPu45z8+92UdsWVGs6PsSr/yK01uu11vla61yt9Q+HH/uO1vql8zx3TTDdnQPMmW5FKWSDkYEe3FSBLdrCpy+ZaVgNt14yk0iLicd3BOaJRq3d/fz6zXIK8+ysyQ+MOahgF2E28e3r5nL/pxZTWtvBdb/Zxu6jgT/sdiHyK56hyZKc5DhKpTe6IcrrOthQXMdtK7OJn+Dxcr5gj4/io4vS+eu+kwHZyOlXb5bT0TvAf17rkk1EPnbdgnRe/LdV2KIj+PSjb/PotqNBMUF+Lgn0Yc40KyVyh26Ih7ZUEh1hmtTxcr5yZ0EOPQODPLMnsHqlH23o5I+7jvPJi2ac2TshfCtvupUX713FWlcKP3ilhHuf2U9XkB2CIoE+zJVq43hTd9D9Awa7mpZuXjpwipsvygqItq/OVBurZifz5M5jAXVs2Y9fLSXKYuKrV+QbXUpIs0ZH8PCtS/k/Vzl59f3T3PDAjoCeUzmXBPqwkYnRsjoZdplKj2wdWlXyuaLJHy/nK3euyqG2vZdXD9UaXQoAuyqb2FBcxz2XzibF6ptTm8SFKaW4e00uf7zrYpq7+rnh/h28dui00WV5RQJ9mDN1qKeL7BidOo2dfTz7zgk+tjiD9MQYo8s549I5Kcyyx/H77VWGj6N6PJofri8mPSGauwpyDK0l3KyabeflLxaQ64jjC0+9y49fLcUdQJ/azkcCfVhmUgzWKItMjE6hx3dU0T/o4QsBttvRZFLcsSqbgydaebe6xdBa/nf/SQ6dbOcbV0mvcyNkJMbw3BdW8KmLs3h4SyX/+tgemjr7jC7rgiTQhw21AJDe6FOlo3eAP+w6zlXzUsl1xBtdzof885JMbNEWQ3uld/e7+enrZSzMTGDdwnTD6gh3URYzP/rYR/jJjQvYe7yF636znQMnWo0u67wk0M/iTLVRerrD8I/Z4eCp3dV09Lr9eoDFZMRFWbjl4ixePXSamhZjDhF/ZGsVte29fPu6uZhMskzRaJ9YNoMX7l6JSSk+8fAu/vR2dcBlhQT6WZxpVjr63NICwM96Bwb5/fYqCvPsfCTT98fL+cptK7JRSvEHA3ql17X38vCWSq6en8pF2f475EOMz/yMBP7+xQIuyU3mW//7Pt94/r2AarssgX4W1/BKl1Lpje5Xf9lXQ2NnH3cH2Nj5udITY7h6firP7Kme8uWsP99Qhtvj4b6rnVN6XTG2pLhIHr/9Ir502Wz+sq+GGx/eyYlmYz7FnUsC/Sxzpg+tdJFWuv7jHvTwu62VLJqRyIpZyUaXM6a7CnLo6HXzl71Tt9Ho8Kk2/rKvhttXZjMzOW7Kriu8ZzYpvnblHB7912Ucb+rm+vu3syUADqGWQD9LXJSFmcmxsmPUj/7+3mlONPdwzxQeYDEZi7OSWJyVyOM7j01Je2WtNT98pYSEmAjuvTTP79cTk7N27nRevreAVFs0tz++h9+8aexpSBLo53ANT4wK3/N4NA9triQvJZ61rulGl+O1uwpyON7UzZul9X6/1lul9eysbOIrl+eRECu9zoNBtj2OF+5ZybqF6fx84xE+98e9tPUYcxqSBPo5nGlWqpq66OkPnImOUPFWaT1ldR3cvSY3qFZtXDUvlfSEaL/3Sh8Y9PDD9SXMsscZ2nVSjF9spIVffnIR371+LpvLGrjh/u2GLIGWQD+HM9WG1tICwNe01jywuYKMxBiuD7I11RazidtWZrP7aDOHT7X57Tp/eruaow1dfPMaFxHS6zzoKKW4fVUOz37uErr7B/noAzum/Jxa+a/mHHNHVrrIxKhP7T7azP7qVj6/elZQhtXNy7OIjTT7baNRW88Av3zjCCtmJbPWleKXa4ipsSx7Gn//UgELMhL58rMH+O5Lh6fsNKTg+8nys8ykGOIizbJ00cce3FyBPT6STywLzmPTEmIiuGlpJi8fPEV9h+9PtXlgUwWtPdLrPFSkWKN5+rMXc1dBDk/sPManHtlNXbv/T0OSQD+HyaSYk2qV4+h86P2aNraVN3LHKmOOl/OV21flMODx8NTuap++bnVTN0/sOMaNSzKZnxG4G63E+ESYTfzf6+by61sWc/hUO9f9Zjt7qpr9ek0J9PNwpdkoPd0ecNt6g9VDWyqwRln4lxXBPdGXY4/jcmcKT+8+7tPdgf/9Wilmk+Lf/2mOz15TBI51C9N58d5VxEdZuOWR3X7t4imBfh7ONBvtvW5OB/mBsYGgsqGTVw/V8i8rZmKLDv5leHeuyqGpq5+XDpzyyevtPdbMK++f5vOrZzHdJr3OQ1X+8GlIlztT+P7fi3l0m3/OrZVAPw+X9Eb3md9uqSTSbOLOEOnlvSI3GWeqlcd2TP4uy+PRfP+VEqbbogLqgA/hH7bh05D+a908blqW6ZdrSKCfx5zhQJeJ0ck53dbD/+4/yScvmoE9AI6X8wWlFHcV5FBa28GOismdDv/ye6c4eKKVf79yDrGRxh2OLaaOyaS4bWU2ibGR/nl9v7xqkLNGRzBjWozcoU/SI1ur8Gj4bGFo3X1evzAde3wkj+2Y+Mfm3oFBfvJaGfPSbXx8iX/u1kT4kUC/AGeqLSju0Nt7B2jvNWab8Wiau/p5Zk81NyxMZ8a0WKPL8anoCDO3XjKTt0rrJ3yA8O+3V3GytYf/vNYVVLtmRWCTQL8AV6qVow2dAdXr+FxNnX1c9T9bWfy9jdz08E4e2FTBoZNthjYHGvHEzmP0DAwG3PFyvnLrJTOJNJt4YsexcX9vQ0cfD26qYK1rOitz7b4vToQtCfQLcKXZ8Ggor5vYHZi/DXo0X3p2P01d/dyxMpuegUF++noZ1/1mO8t/9CZff+4gLx88RWt3/5TX1tnn5smdx7hi7nTyh1sShxp7fBQ3LErn+X01436P/+eNI/S5PXzzGul1LnxLZmIuwDncAqCktj0gT9X5+YYydlQ08ZMbF5zZfVnf0cvWI41sOdLAGyV1/PXdGkxqqAXs6nwHa+Y4mJ+e4PeP+M+8XU1bzwD3hOjd+Yg7C3L4y74antlzwuvDOspqO3h2TzX/uiI7IM9SFcFNAv0CsqbFEhNhDsiJ0dcP1/Lg5kpuWZ71ga30KdZoblyayY1LMxn0aA6caGVLWT2bjzTwi41H+MXGI9jjIynKc7B6joOiPAdJcb6dbe9zD/Lo9qOsmJXM4qwkn752oHGl2ViZm8wfdh3jM4U5XvWo+eH6EuKjLHz5cul1LnxPAv0CzMMtAAKtN/rRhk7+/bmDLMxM4Lvr5l7weWaTYunMJJbOTOJrV86hsbOPbeUNbC5rYFNZPS/sP4lSsDAzkTVzHKyZk8KCjMnfvb/w7knq2vv42U0LJ/U6weKughzuenIvrx6qZd0YXSQ3l9Wz9UgD377W5fNfpEKABPqoXGlWXjtUi9Y6IBomdfe7ufupd7GYFQ/eupQoi/d9UezxUXxscSYfWzx09/5eTStbjgwF/K/eLOeXb5QzLS6Sojz7mbv35HGuHR/0aH67pZKPZCRQMDs8JvsunZNCjj2Ox7ZXjRro7kEPP1pfwszk2KBvgSAClwT6KJypNp7Zc4K69j5SE4zdlq215psvvM+R+g7+cOdyMhJjJvxaZpMaPlotia+szae5q//M3fvWIw387cAplIIFGQmsnpPCmjkOFmYmYh7j7n39+6c51tTNQ59eEhC/AKeCyaS4Y1U233nxMPuOt7B05vmHmf689wRH6jp5+NYl4/pFLMR4SKCPwnXWxKjRgf7kzmO8eOAU//FPcyjMc/j0tafFRXLDogxuWJSBx6M5dKqNzWUNbC6r5/63yvn1m+UkxkZQmOdgTb6DonwHDusH79611jy4uZJZjjj+aV6qT+sLdB9fksnPXi/jse1V5w30jt4BfrHhCMuzp4XdeyOmlgT6KM60ADjdwaVzjDt0YO+xZn7wSglrXdO5e7V/V46YTIoFmYksyEzkS5fn0drdz9byRraUNbDlSAMvHxxqSvWRjATWzHGwOt/BohmJbCtvpOR0Oz+5cUHYbZSJi7Jwy8VZPLL1KDUt3WQmfXAj1UObK2nq6uex26XXufAvCfRRJMREkJFobAuA+o5e7nn6XTKTYvj5JxZOeVgmxkaybmE66xam4/Foik+3s7msns1lDTywqYLfvFVBQkwEURYT6QnRfHRRxpTWFyhuW5HNo9uq+MOu43zrGteZx2taunl0exUfW5zBwhmJxhUowoIE+hhcaVZDDnuFoUOD7/3Tftp7B3jyzuUkxBjbftZkUszPSGB+RgL3XpZHW/cA2ysa2VxWz+6qJr5yeT6RlvDcq5aeGMPV81N5Zk81X748j7iooR+tn7xWhgL+Q3qdiykggT4GZ6qNTWUN9LkHp3wy6yevlbKnqpn/+eTCM+P5gSQhNoJrF6Rx7YI0o0sJCHcV5PD3907z/L4abluZzf7qFl46eIp7L51N+iQmsYXwVnjeTo2DM83KoEdTUT+1LQBeee80j2yr4rYVM/nYYunGFwyGVg4l8viOKgY9mh+8UoI9Pipk+9mIwONVoCulrlJKlSmlKpRS953n619TShUrpd5TSr2plAqZhbZnVrpM4QajivoO/uP5gyzJSuQ/r73w5iEReO4qyOFYUzffeP499h1v4etX5hMfJR+ExdQYM9CVUmbgAeBqYC5wi1Lq3JTZDyzTWi8Angd+4utCjZKdHEeUxUTpFE2Mdva5+fwf9xEbaebBTy8N2zHpYHXVvFTSE6L567s1OFOtH2jNIIS/eZMWy4EKrfVRrXU/8Cxww9lP0Fpv0lp3D/91NxAyYwRnWgBMQW90rTXfeP4gx5q6+c0tSwxf+y7Gz2I2cceqoeP2vnWNa8zNWEL4kjefBTOAE2f9vQa4eJTn3wW8er4vKKU+B3wOICsry8sSjedMtfJmSb3fWwA8uq2K9e/X8q1rnKzITfbbdYR/3VmQw4rcZOZnBF6XThHafPp5Xil1K7AM+On5vq61/p3WepnWepnD4dvdjv7kSrPR1NVPQ2ef366xq7KJH79WytXzU0PuyLZwYx5e3inEVPMm0E8CZw8EZg4/9gFKqbXAfwLrtNb+Sz4DOFOHJkb91Xmxtq2XLz7zLjOTY/npTQtlN6EQYkK8CfR3gDylVI5SKhK4GXjp7CcopRYDv2UozOt9X6axXGlDLQD8sWO03+3h3/70Lt39g/z21qWyIkIIMWFjBrrW2g3cC7wOlADPaa0PK6W+p5RaN/y0nwLxwF+UUgeUUi9d4OWCUmJsJGkJ0X6ZGP3R+hL2HW/hJzcuIC9Ej2sTQkwNr24HtdbrgfXnPPads/681sd1BRxnqtXnd+h/23+SJ3Ye466CHK5bMPrhCEIIMRZZ5OwlZ5qNyoZO+t0en7xeaW07973wHsuzp3Hf1XJYsBBi8iTQveRKszEwqKlsmHwLgPbeAb7wx33YoiO4/9OLvTqLUgghxiJJ4iXXSG/0SXZe9Hg0X3/uIDUtPTzw6SWkWGXzkBDCNyTQvZRjjyPSYpr00sWHtlSysbiOb13j4qLsaT6qTgghJNC9ZjGbyJ8eT/EkJka3lTfw8w1lXL8wnTtWZfuuOCGEQAJ9XJyptgkvXTzZ2sOXntnP7JR4fvzPH5HNQ0IIn5NAHwdnqpWGjj4ax9kCoM89yD1P7WNgUPPwrUvPnGYjhBC+JIE+DiO90cc7jv5fLxdzsKaNn920kFmOeH+UJoQQEujj4ZzASpfn9p7gT29X84XVuVw1P9VfpQkhhAT6eCTHR5FijfL69KJDJ9v4v387xMrcZP79ynw/VyeECHcS6OPkTLN51QKgtbufu5/ex7S4SH59y2IssnlICOFnkjLj5EqzUlHfycDghVsAeDyar/z5ALVtvTz46SXY46OmsEIhRLiSQB8nV6qN/kEPVY1dF3zOr98qZ3NZA9+5fh6Ls5KmsDohRDiTQB8n5xi90TeV1fOrN8v55yUZ3Hpx8ByzJ4QIfhLo45TriCfCrM47MXqiuZuvPHsAZ6qNH35UNg8JIaaWBPo4RZhNzE6xfmjpYu/AIF94ah8erXn41iXERJoNqlAIEa4k0CfAlWr9wOYirTXf/tshDp9q55efXMTM5DgDqxNChCsJ9Alwpdmobe+lpasfgGf2nOD5fTV86bLZXO6abnB1QohwJU1FJuDMxGhtO3GRFr770mGK8h18ea1sHhJCGEcCfQKcqUM9XXZVNvHXfTU4rFH86pOLMJtkElQIYRwJ9AlwWKOwx0dx/6YKIswmnv/CCpLiIo0uSwgR5mQMfYJcaVa0hu/fMI8FmYlGlyOEEHKHPlGfLZxFUZ6DT14km4eEEIFBAn2CivIdFOU7jC5DCCHOkCEXIYQIERLoQggRIiTQhRAiREigCyFEiJBAF0KIECGBLoQQIUICXQghQoQEuhBChAiltTbmwko1AMcn+O12oNGH5QQ7eT8+SN6Pf5D34oNC4f2YqbU+765GwwJ9MpRSe7XWy4yuI1DI+/FB8n78g7wXHxTq74cMuQghRIiQQBdCiBARrIH+O6MLCDDyfnyQvB//IO/FB4X0+xGUY+hCCCE+LFjv0IUQQpxDAl0IIUJE0AW6UuoqpVSZUqpCKXWf0fUYRSk1Qym1SSlVrJQ6rJT6stE1BQKllFkptV8p9XejazGaUipRKfW8UqpUKVWilFphdE1GUUp9dfjn5JBS6hmlVLTRNflDUAW6UsoMPABcDcwFblFKzTW2KsO4ga9rrecClwD/Fsbvxdm+DJQYXUSA+BXwmtbaCSwkTN8XpVQG8CVgmdZ6PmAGbja2Kv8IqkAHlgMVWuujWut+4FngBoNrMoTW+rTW+t3hP3cw9MOaYWxVxlJKZQLXAo8aXYvRlFIJQBHwewCtdb/WutXQooxlAWKUUhYgFjhlcD1+EWyBngGcOOvvNYR5iAEopbKBxcDbBpditF8C3wA8BtcRCHKABuDx4SGoR5VScUYXZQSt9UngZ0A1cBpo01pvMLYq/wi2QBfnUErFA38FvqK1bje6HqMopa4D6rXW+4yuJUBYgCXAQ1rrxUAXEJZzTkqpJIY+yecA6UCcUupWY6vyj2AL9JPAjLP+njn8WFhSSkUwFOZPa61fMLoeg60C1imljjE0FHeZUuopY0syVA1Qo7Ue+dT2PEMBH47WAlVa6wat9QDwArDS4Jr8ItgC/R0gTymVo5SKZGhi4yWDazKEUkoxND5aorX+hdH1GE1r/U2tdabWOpuh/y7e0lqH5F2YN7TWtcAJpdSc4YcuB4oNLMlI1cAlSqnY4Z+bywnRCWKL0QWMh9barZS6F3idoZnqx7TWhw0uyyirgH8B3ldKHRh+7Fta6/XGlSQCzBeBp4dvfo4CdxhcjyG01m8rpZ4H3mVoddh+QrQFgGz9F0KIEBFsQy5CCCEuQAJdCCFChAS6EEKECAl0IYQIERLoQggRIiTQhRAiREigCyFEiPj/KuqplKg9vsUAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plt.plot(np.arange(10), np.random.rand(10))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "850f328f-bd77-45ed-8323-47f0b2f5a638",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.4"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment