Last active
June 18, 2019 14:44
-
-
Save yueyericardo/06d20fd271e3882a7f0b3dc47e42d0ca to your computer and use it in GitHub Desktop.
Toy linear regression model (Keras)
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import tensorflow as tf | |
config = tf.ConfigProto() | |
config.gpu_options.allow_growth = True | |
import numpy as np | |
import matplotlib | |
from matplotlib import pyplot as plt | |
%matplotlib inline | |
class linear_reg(tf.keras.Model): | |
def __init__(self): | |
super(linear_reg, self).__init__(name='linear_reg') | |
linear_reg_Model = tf.keras.Sequential([ | |
tf.keras.layers.Dense(1, input_shape=(1,), kernel_initializer='ones', bias_initializer='zeros'), | |
]) | |
self.linear_reg_Model = linear_reg_Model | |
def __call__(self, x, training=False): | |
y = self.linear_reg_Model(x) | |
return y | |
sess = tf.Session(config=config) | |
tf.keras.backend.set_session(sess) | |
lr_model = linear_reg() | |
plt.figure(figsize=(16,5)) | |
x_t = 100*np.random.randn(1000, 1) | |
y_t = 2 * x_t | |
x_v = 100*np.random.randn(1000, 1) | |
y_v = 2 * x_v | |
plt.scatter(x_t, y_t) | |
plt.scatter(x_v, y_v) | |
plt.show() | |
lr_model.compile(tf.keras.optimizers.SGD(lr=1e-5), | |
loss=tf.keras.metrics.mean_squared_error) | |
history = lr_model.fit(x=x_t, y=y_t, | |
steps_per_epoch=1, epochs=50, | |
validation_data = (x_v, y_v), | |
validation_steps=2,) | |
lr_model.get_weights() # [1.9999878], [8.888327e-05] | |
lr_model.summary() | |
import matplotlib.pyplot as plt | |
import numpy as np | |
%matplotlib inline | |
# Loss | |
plt.figure(figsize=(16,5)) | |
loss = history.history['loss'] | |
val_loss = history.history['val_loss'] | |
epochs = range(1, len(loss) + 1) | |
plt.plot(epochs, loss, '--bo', label='Training loss') | |
plt.plot(epochs, val_loss, '-rs', label='Validation loss') | |
plt.title('Training and validation loss', fontsize=18) | |
plt.xlabel('Epochs', fontsize=18) | |
plt.ylabel('Loss', fontsize=18) | |
plt.legend(fontsize=15) | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment