Skip to content

Instantly share code, notes, and snippets.

@yueyericardo
Last active June 26, 2019 13:02
Show Gist options
  • Save yueyericardo/ad4e4a5ed5f4a95403f0c414523335fc to your computer and use it in GitHub Desktop.
Save yueyericardo/ad4e4a5ed5f4a95403f0c414523335fc to your computer and use it in GitHub Desktop.
class Progbar(object):
"""Displays a progress bar.
Arguments:
target: Total number of steps expected, None if unknown.
width: Progress bar width on screen.
verbose: Verbosity mode, 0 (silent), 1 (verbose), 2 (semi-verbose)
stateful_metrics: Iterable of string names of metrics that
should *not* be averaged over time. Metrics in this list
will be displayed as-is. All others will be averaged
by the progbar before display.
interval: Minimum visual progress update interval (in seconds).
unit_name: Display name for step counts (usually "step" or "sample").
"""
def __init__(self, target, width=30, verbose=1, interval=0.05,
stateful_metrics=None, unit_name='step'):
self.target = target
self.width = width
self.verbose = verbose
self.interval = interval
self.unit_name = unit_name
if stateful_metrics:
self.stateful_metrics = set(stateful_metrics)
else:
self.stateful_metrics = set()
self._dynamic_display = ((hasattr(sys.stdout, 'isatty') and
sys.stdout.isatty()) or
'ipykernel' in sys.modules or
'posix' in sys.modules)
self._total_width = 0
self._seen_so_far = 0
# We use a dict + list to avoid garbage collection
# issues found in OrderedDict
self._values = {}
self._values_order = []
self._start = time.time()
self._last_update = 0
def update(self, current, values=None):
"""Updates the progress bar.
Arguments:
current: Index of current step.
values: List of tuples:
`(name, value_for_last_step)`.
If `name` is in `stateful_metrics`,
`value_for_last_step` will be displayed as-is.
Else, an average of the metric over time will be displayed.
"""
values = values or []
for k, v in values:
if k not in self._values_order:
self._values_order.append(k)
if k not in self.stateful_metrics:
if k not in self._values:
self._values[k] = [v * (current - self._seen_so_far),
current - self._seen_so_far]
else:
self._values[k][0] += v * (current - self._seen_so_far)
self._values[k][1] += (current - self._seen_so_far)
else:
# Stateful metrics output a numeric value. This representation
# means "take an average from a single value" but keeps the
# numeric formatting.
self._values[k] = [v, 1]
self._seen_so_far = current
now = time.time()
info = ' - %.0fs' % (now - self._start)
if self.verbose == 1:
if (now - self._last_update < self.interval and
self.target is not None and current < self.target):
return
prev_total_width = self._total_width
if self._dynamic_display:
sys.stdout.write('\b' * prev_total_width)
sys.stdout.write('\r')
else:
sys.stdout.write('\n')
if self.target is not None:
numdigits = int(np.log10(self.target)) + 1
bar = ('%' + str(numdigits) + 'd/%d [') % (current, self.target)
prog = float(current) / self.target
prog_width = int(self.width * prog)
if prog_width > 0:
bar += ('=' * (prog_width - 1))
if current < self.target:
bar += '>'
else:
bar += '='
bar += ('.' * (self.width - prog_width))
bar += ']'
else:
bar = '%7d/Unknown' % current
self._total_width = len(bar)
sys.stdout.write(bar)
if current:
time_per_unit = (now - self._start) / current
else:
time_per_unit = 0
if self.target is not None and current < self.target:
eta = time_per_unit * (self.target - current)
if eta > 3600:
eta_format = '%d:%02d:%02d' % (eta // 3600, (eta % 3600) // 60, eta % 60)
elif eta > 60:
eta_format = '%d:%02d' % (eta // 60, eta % 60)
else:
eta_format = '%ds' % eta
info = ' - ETA: %s' % eta_format
else:
if time_per_unit >= 1 or time_per_unit == 0:
info += ' %.0fs/%s' % (time_per_unit, self.unit_name)
elif time_per_unit >= 1e-3:
info += ' %.0fms/%s' % (time_per_unit * 1e3, self.unit_name)
else:
info += ' %.0fus/%s' % (time_per_unit * 1e6, self.unit_name)
for k in self._values_order:
info += ' - %s:' % k
if isinstance(self._values[k], list):
avg = np.mean(self._values[k][0] / max(1, self._values[k][1]))
if abs(avg) > 1e-3:
info += ' %.4f' % avg
else:
info += ' %.4e' % avg
else:
info += ' %s' % self._values[k]
self._total_width += len(info)
if prev_total_width > self._total_width:
info += (' ' * (prev_total_width - self._total_width))
if self.target is not None and current >= self.target:
info += '\n'
sys.stdout.write(info)
sys.stdout.flush()
elif self.verbose == 2:
if self.target is not None and current >= self.target:
numdigits = int(np.log10(self.target)) + 1
count = ('%' + str(numdigits) + 'd/%d') % (current, self.target)
info = count + info
for k in self._values_order:
info += ' - %s:' % k
avg = np.mean(self._values[k][0] / max(1, self._values[k][1]))
if avg > 1e-3:
info += ' %.4f' % avg
else:
info += ' %.4e' % avg
info += '\n'
sys.stdout.write(info)
sys.stdout.flush()
self._last_update = now
def add(self, n, values=None):
self.update(self._seen_so_far + n, values)
def get_bar(i, iter_per_epoch):
numdigits = int(np.log10(iter_per_epoch)) + 1
bar = ('%' + str(numdigits) + 'd/%d ') % (i, iter_per_epoch)
numdigits = int(np.log10(iter_per_epoch)) + 1
bar = ('%' + str(numdigits) + 'd/%d [') % (i, iter_per_epoch)
prog = float(i) / iter_per_epoch
prog_width = int(30 * prog)
if prog_width > 0:
bar += ('=' * (prog_width - 1))
if i < iter_per_epoch:
bar += '>'
else:
bar += '='
bar += ('.' * (30 - prog_width))
bar += ']'
return bar
for epoch in range(num_epochs):
print('Epoch: %d/%d' % (epoch+1, num_epochs))
start_time_epoch = time.time()
train_iterator = tf.compat.v1.data.make_one_shot_iterator(train_dataset)
train_iterator_handle = sess.run(train_iterator.string_handle())
for i in range(iter_per_epoch):
_, loss_value = sess.run([optimizer, loss], feed_dict={handle: train_iterator_handle})
if i % 10 == 0:
bar = get_bar(i, iter_per_epoch)
now = time.time()
# info = ' - %.0fs' % (now - self._start)
time_per_unit = (now - start_time_epoch) / (i+1)
eta = time_per_unit * (iter_per_epoch - i)
def get_eta(eta):
if eta > 3600:
eta_format = '%d:%02d:%02d' % (eta // 3600, (eta % 3600) // 60, eta % 60)
elif eta > 60:
eta_format = '%02d:%02d' % (eta // 60, eta % 60)
else:
eta_format = '%ds' % eta
return eta_format
eta_format = get_eta(eta)
info_eta = ' - ETA: %s' % eta_format
if abs(loss_value) > 1e-2:
info_loss = ' - loss: %.4f' % loss_value
else:
info_loss = ' - loss: %.4e' % loss_value
sys.stdout.write(bar+info_eta+info_loss+' '*10)
sys.stdout.write('\r')
sys.stdout.flush()
model.save(directory = model_dir, filename = model_name)
bar = get_bar(iter_per_epoch, iter_per_epoch)
end_time_epoch = time.time()
time_elapsed_epoch = end_time_epoch - start_time_epoch
eta_format = get_eta(time_elapsed_epoch)
info_eta = ' - Time: %s' % eta_format
sys.stdout.write(bar+info_eta+info_loss+' '*10)
import sys, time
class ShowProcess():
"""
显示处理进度的类
调用该类相关函数即可实现处理进度的显示
"""
i = 0 # 当前的处理进度
max_steps = 0 # 总共需要处理的次数
max_arrow = 50 #进度条的长度
infoDone = 'done'
# 初始化函数,需要知道总共的处理次数
def __init__(self, max_steps, infoDone = 'Done'):
self.max_steps = max_steps
self.i = 0
self.infoDone = infoDone
# 显示函数,根据当前的处理进度i显示进度
# 效果为[>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>]100.00%
def show_process(self, i=None):
if i is not None:
self.i = i
else:
self.i += 1
num_arrow = int(self.i * self.max_arrow / self.max_steps) #计算显示多少个'>'
num_line = self.max_arrow - num_arrow #计算显示多少个'-'
percent = self.i * 100.0 / self.max_steps #计算完成进度,格式为xx.xx%
process_bar = '[' + '>' * num_arrow + '-' * num_line + ']'\
+ '%.2f' % percent + '%' + '\r' #带输出的字符串,'\r'表示不换行回到最左边
sys.stdout.write(process_bar) #这两句打印字符到终端
sys.stdout.flush()
if self.i >= self.max_steps:
self.close()
def close(self):
print('')
print(self.infoDone)
self.i = 0
if __name__=='__main__':
max_steps = 100
process_bar = ShowProcess(max_steps, 'OK')
for i in range(max_steps):
process_bar.show_process()
time.sleep(0.01)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment